Metamath Proof Explorer


Theorem hhssabloi

Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008) (Revised by Mario Carneiro, 23-Dec-2013) (Proof shortened by AV, 27-Aug-2021) (New usage is discouraged.)

Ref Expression
Hypothesis hhssabl.1 HS
Assertion hhssabloi +H×HAbelOp

Proof

Step Hyp Ref Expression
1 hhssabl.1 HS
2 1 hhssabloilem +GrpOp+H×HGrpOp+H×H+
3 2 simp2i +H×HGrpOp
4 1 shssii H
5 xpss12 HHH×H×
6 4 4 5 mp2an H×H×
7 ax-hfvadd +:×
8 7 fdmi dom+=×
9 6 8 sseqtrri H×Hdom+
10 ssdmres H×Hdom+dom+H×H=H×H
11 9 10 mpbi dom+H×H=H×H
12 1 sheli xHx
13 1 sheli yHy
14 ax-hvcom xyx+y=y+x
15 12 13 14 syl2an xHyHx+y=y+x
16 ovres xHyHx+H×Hy=x+y
17 ovres yHxHy+H×Hx=y+x
18 17 ancoms xHyHy+H×Hx=y+x
19 15 16 18 3eqtr4d xHyHx+H×Hy=y+H×Hx
20 3 11 19 isabloi +H×HAbelOp