| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmeoopn.1 |
|- X = U. J |
| 2 |
|
hmeocnvcn |
|- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
| 3 |
1
|
cncls2i |
|- ( ( `' F e. ( K Cn J ) /\ A C_ X ) -> ( ( cls ` K ) ` ( `' `' F " A ) ) C_ ( `' `' F " ( ( cls ` J ) ` A ) ) ) |
| 4 |
2 3
|
sylan |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( `' `' F " A ) ) C_ ( `' `' F " ( ( cls ` J ) ` A ) ) ) |
| 5 |
|
imacnvcnv |
|- ( `' `' F " A ) = ( F " A ) |
| 6 |
5
|
fveq2i |
|- ( ( cls ` K ) ` ( `' `' F " A ) ) = ( ( cls ` K ) ` ( F " A ) ) |
| 7 |
|
imacnvcnv |
|- ( `' `' F " ( ( cls ` J ) ` A ) ) = ( F " ( ( cls ` J ) ` A ) ) |
| 8 |
4 6 7
|
3sstr3g |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( F " A ) ) C_ ( F " ( ( cls ` J ) ` A ) ) ) |
| 9 |
|
hmeocn |
|- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
| 10 |
1
|
cnclsi |
|- ( ( F e. ( J Cn K ) /\ A C_ X ) -> ( F " ( ( cls ` J ) ` A ) ) C_ ( ( cls ` K ) ` ( F " A ) ) ) |
| 11 |
9 10
|
sylan |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( F " ( ( cls ` J ) ` A ) ) C_ ( ( cls ` K ) ` ( F " A ) ) ) |
| 12 |
8 11
|
eqssd |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( F " A ) ) = ( F " ( ( cls ` J ) ` A ) ) ) |