| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iblidicc.a |
|- ( ph -> A e. RR ) |
| 2 |
|
iblidicc.b |
|- ( ph -> B e. RR ) |
| 3 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 4 |
1 2 3
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 5 |
|
ax-resscn |
|- RR C_ CC |
| 6 |
4 5
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
| 7 |
|
ssid |
|- CC C_ CC |
| 8 |
|
cncfmptid |
|- ( ( ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 9 |
6 7 8
|
sylancl |
|- ( ph -> ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 10 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> x ) e. L^1 ) |
| 11 |
1 2 9 10
|
syl3anc |
|- ( ph -> ( x e. ( A [,] B ) |-> x ) e. L^1 ) |