| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iblidicc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
iblidicc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 5 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 6 |
4 5
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 7 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 8 |
|
cncfmptid |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 9 |
6 7 8
|
sylancl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 10 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ 𝐿1 ) |
| 11 |
1 2 9 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ 𝐿1 ) |