Metamath Proof Explorer


Theorem rpsqrtcn

Description: Continuity of the real positive square root function. (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Assertion rpsqrtcn ( √ ↾ ℝ+ ) ∈ ( ℝ+cn→ ℝ+ )

Proof

Step Hyp Ref Expression
1 rpssre + ⊆ ℝ
2 ax-resscn ℝ ⊆ ℂ
3 1 2 sstri + ⊆ ℂ
4 sqrtf √ : ℂ ⟶ ℂ
5 fdm ( √ : ℂ ⟶ ℂ → dom √ = ℂ )
6 4 5 ax-mp dom √ = ℂ
7 3 6 sseqtrri + ⊆ dom √
8 7 sseli ( 𝑥 ∈ ℝ+𝑥 ∈ dom √ )
9 rpsqrtcl ( 𝑥 ∈ ℝ+ → ( √ ‘ 𝑥 ) ∈ ℝ+ )
10 8 9 jca ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ dom √ ∧ ( √ ‘ 𝑥 ) ∈ ℝ+ ) )
11 10 rgen 𝑥 ∈ ℝ+ ( 𝑥 ∈ dom √ ∧ ( √ ‘ 𝑥 ) ∈ ℝ+ )
12 ffun ( √ : ℂ ⟶ ℂ → Fun √ )
13 4 12 ax-mp Fun √
14 ffvresb ( Fun √ → ( ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ ↔ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ∈ dom √ ∧ ( √ ‘ 𝑥 ) ∈ ℝ+ ) ) )
15 13 14 ax-mp ( ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ ↔ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ∈ dom √ ∧ ( √ ‘ 𝑥 ) ∈ ℝ+ ) )
16 11 15 mpbir ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+
17 ioorp ( 0 (,) +∞ ) = ℝ+
18 ioossico ( 0 (,) +∞ ) ⊆ ( 0 [,) +∞ )
19 17 18 eqsstrri + ⊆ ( 0 [,) +∞ )
20 resabs1 ( ℝ+ ⊆ ( 0 [,) +∞ ) → ( ( √ ↾ ( 0 [,) +∞ ) ) ↾ ℝ+ ) = ( √ ↾ ℝ+ ) )
21 19 20 ax-mp ( ( √ ↾ ( 0 [,) +∞ ) ) ↾ ℝ+ ) = ( √ ↾ ℝ+ )
22 resqrtcn ( √ ↾ ( 0 [,) +∞ ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℝ )
23 rescncf ( ℝ+ ⊆ ( 0 [,) +∞ ) → ( ( √ ↾ ( 0 [,) +∞ ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℝ ) → ( ( √ ↾ ( 0 [,) +∞ ) ) ↾ ℝ+ ) ∈ ( ℝ+cn→ ℝ ) ) )
24 19 22 23 mp2 ( ( √ ↾ ( 0 [,) +∞ ) ) ↾ ℝ+ ) ∈ ( ℝ+cn→ ℝ )
25 21 24 eqeltrri ( √ ↾ ℝ+ ) ∈ ( ℝ+cn→ ℝ )
26 cncffvrn ( ( ℝ+ ⊆ ℂ ∧ ( √ ↾ ℝ+ ) ∈ ( ℝ+cn→ ℝ ) ) → ( ( √ ↾ ℝ+ ) ∈ ( ℝ+cn→ ℝ+ ) ↔ ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ ) )
27 3 25 26 mp2an ( ( √ ↾ ℝ+ ) ∈ ( ℝ+cn→ ℝ+ ) ↔ ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ )
28 16 27 mpbir ( √ ↾ ℝ+ ) ∈ ( ℝ+cn→ ℝ+ )