| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | rpge0 | ⊢ ( 𝐴  ∈  ℝ+  →  0  ≤  𝐴 ) | 
						
							| 3 |  | remsqsqrt | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( ( √ ‘ 𝐴 )  ·  ( √ ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( √ ‘ 𝐴 )  ·  ( √ ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( √ ‘ 𝐴 )  ·  ( √ ‘ 𝐴 ) )  /  ( √ ‘ 𝐴 ) )  =  ( 𝐴  /  ( √ ‘ 𝐴 ) ) ) | 
						
							| 6 | 1 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℂ ) | 
						
							| 7 | 6 | sqrtcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( √ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 8 |  | rpsqrtcl | ⊢ ( 𝐴  ∈  ℝ+  →  ( √ ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 9 | 8 | rpne0d | ⊢ ( 𝐴  ∈  ℝ+  →  ( √ ‘ 𝐴 )  ≠  0 ) | 
						
							| 10 | 7 7 9 | divcan4d | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( √ ‘ 𝐴 )  ·  ( √ ‘ 𝐴 ) )  /  ( √ ‘ 𝐴 ) )  =  ( √ ‘ 𝐴 ) ) | 
						
							| 11 | 5 10 | eqtr3d | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  /  ( √ ‘ 𝐴 ) )  =  ( √ ‘ 𝐴 ) ) |