Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
2 |
|
rpge0 |
⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ 𝐴 ) |
3 |
|
remsqsqrt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) = 𝐴 ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ+ → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) = 𝐴 ) |
5 |
4
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) = ( 𝐴 / ( √ ‘ 𝐴 ) ) ) |
6 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
7 |
6
|
sqrtcld |
⊢ ( 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ ℂ ) |
8 |
|
rpsqrtcl |
⊢ ( 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ ℝ+ ) |
9 |
8
|
rpne0d |
⊢ ( 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ≠ 0 ) |
10 |
7 7 9
|
divcan4d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) = ( √ ‘ 𝐴 ) ) |
11 |
5 10
|
eqtr3d |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 / ( √ ‘ 𝐴 ) ) = ( √ ‘ 𝐴 ) ) |