| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxpcncf1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | cxpcncf1.d | ⊢ ( 𝜑  →  𝐷  ⊆  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) | 
						
							| 3 |  | resmpt | ⊢ ( 𝐷  ⊆  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( ( 𝑥  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↦  ( 𝑥 ↑𝑐 𝐴 ) )  ↾  𝐷 )  =  ( 𝑥  ∈  𝐷  ↦  ( 𝑥 ↑𝑐 𝐴 ) ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↦  ( 𝑥 ↑𝑐 𝐴 ) )  ↾  𝐷 )  =  ( 𝑥  ∈  𝐷  ↦  ( 𝑥 ↑𝑐 𝐴 ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 6 | 5 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 7 |  | difss | ⊢ ( ℂ  ∖  ( -∞ (,] 0 ) )  ⊆  ℂ | 
						
							| 8 |  | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ( ℂ  ∖  ( -∞ (,] 0 ) )  ⊆  ℂ )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∈  ( TopOn ‘ ( ℂ  ∖  ( -∞ (,] 0 ) ) ) ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∈  ( TopOn ‘ ( ℂ  ∖  ( -∞ (,] 0 ) ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∈  ( TopOn ‘ ( ℂ  ∖  ( -∞ (,] 0 ) ) ) ) | 
						
							| 11 | 10 | cnmptid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↦  𝑥 )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) ) ) | 
						
							| 12 | 6 | a1i | ⊢ ( 𝜑  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 13 | 10 12 1 | cnmptc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↦  𝐴 )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( ℂ  ∖  ( -∞ (,] 0 ) )  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 15 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) | 
						
							| 16 | 14 5 15 | cxpcn | ⊢ ( 𝑦  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) ,  𝑧  ∈  ℂ  ↦  ( 𝑦 ↑𝑐 𝑧 ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) ,  𝑧  ∈  ℂ  ↦  ( 𝑦 ↑𝑐 𝑧 ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 18 |  | oveq12 | ⊢ ( ( 𝑦  =  𝑥  ∧  𝑧  =  𝐴 )  →  ( 𝑦 ↑𝑐 𝑧 )  =  ( 𝑥 ↑𝑐 𝐴 ) ) | 
						
							| 19 | 10 11 13 10 12 17 18 | cnmpt12 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↦  ( 𝑥 ↑𝑐 𝐴 ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 20 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 21 | 6 | toponrestid | ⊢ ( TopOpen ‘ ℂfld )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) | 
						
							| 22 | 5 15 21 | cncfcn | ⊢ ( ( ( ℂ  ∖  ( -∞ (,] 0 ) )  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ( ℂ  ∖  ( -∞ (,] 0 ) ) –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 23 | 7 20 22 | mp2an | ⊢ ( ( ℂ  ∖  ( -∞ (,] 0 ) ) –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 24 | 23 | eqcomi | ⊢ ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  Cn  ( TopOpen ‘ ℂfld ) )  =  ( ( ℂ  ∖  ( -∞ (,] 0 ) ) –cn→ ℂ ) | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  Cn  ( TopOpen ‘ ℂfld ) )  =  ( ( ℂ  ∖  ( -∞ (,] 0 ) ) –cn→ ℂ ) ) | 
						
							| 26 | 19 25 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↦  ( 𝑥 ↑𝑐 𝐴 ) )  ∈  ( ( ℂ  ∖  ( -∞ (,] 0 ) ) –cn→ ℂ ) ) | 
						
							| 27 |  | rescncf | ⊢ ( 𝐷  ⊆  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( ( 𝑥  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↦  ( 𝑥 ↑𝑐 𝐴 ) )  ∈  ( ( ℂ  ∖  ( -∞ (,] 0 ) ) –cn→ ℂ )  →  ( ( 𝑥  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↦  ( 𝑥 ↑𝑐 𝐴 ) )  ↾  𝐷 )  ∈  ( 𝐷 –cn→ ℂ ) ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( 𝐷  ⊆  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  ( 𝑥  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↦  ( 𝑥 ↑𝑐 𝐴 ) )  ∈  ( ( ℂ  ∖  ( -∞ (,] 0 ) ) –cn→ ℂ ) )  →  ( ( 𝑥  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↦  ( 𝑥 ↑𝑐 𝐴 ) )  ↾  𝐷 )  ∈  ( 𝐷 –cn→ ℂ ) ) | 
						
							| 29 | 2 26 28 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↦  ( 𝑥 ↑𝑐 𝐴 ) )  ↾  𝐷 )  ∈  ( 𝐷 –cn→ ℂ ) ) | 
						
							| 30 | 4 29 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  ( 𝑥 ↑𝑐 𝐴 ) )  ∈  ( 𝐷 –cn→ ℂ ) ) |