| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxpcncf1.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | cxpcncf1.d |  |-  ( ph -> D C_ ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 3 |  | resmpt |  |-  ( D C_ ( CC \ ( -oo (,] 0 ) ) -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) |` D ) = ( x e. D |-> ( x ^c A ) ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ph -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) |` D ) = ( x e. D |-> ( x ^c A ) ) ) | 
						
							| 5 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 6 | 5 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 7 |  | difss |  |-  ( CC \ ( -oo (,] 0 ) ) C_ CC | 
						
							| 8 |  | resttopon |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( CC \ ( -oo (,] 0 ) ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) | 
						
							| 9 | 6 7 8 | mp2an |  |-  ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) | 
						
							| 11 | 10 | cnmptid |  |-  ( ph -> ( x e. ( CC \ ( -oo (,] 0 ) ) |-> x ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) ) ) | 
						
							| 12 | 6 | a1i |  |-  ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 13 | 10 12 1 | cnmptc |  |-  ( ph -> ( x e. ( CC \ ( -oo (,] 0 ) ) |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 14 |  | eqid |  |-  ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 15 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 16 | 14 5 15 | cxpcn |  |-  ( y e. ( CC \ ( -oo (,] 0 ) ) , z e. CC |-> ( y ^c z ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 17 | 16 | a1i |  |-  ( ph -> ( y e. ( CC \ ( -oo (,] 0 ) ) , z e. CC |-> ( y ^c z ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 18 |  | oveq12 |  |-  ( ( y = x /\ z = A ) -> ( y ^c z ) = ( x ^c A ) ) | 
						
							| 19 | 10 11 13 10 12 17 18 | cnmpt12 |  |-  ( ph -> ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 20 |  | ssid |  |-  CC C_ CC | 
						
							| 21 | 6 | toponrestid |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 22 | 5 15 21 | cncfcn |  |-  ( ( ( CC \ ( -oo (,] 0 ) ) C_ CC /\ CC C_ CC ) -> ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 23 | 7 20 22 | mp2an |  |-  ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 24 | 23 | eqcomi |  |-  ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( TopOpen ` CCfld ) ) = ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) | 
						
							| 25 | 24 | a1i |  |-  ( ph -> ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( TopOpen ` CCfld ) ) = ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) ) | 
						
							| 26 | 19 25 | eleqtrd |  |-  ( ph -> ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) ) | 
						
							| 27 |  | rescncf |  |-  ( D C_ ( CC \ ( -oo (,] 0 ) ) -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) |` D ) e. ( D -cn-> CC ) ) ) | 
						
							| 28 | 27 | imp |  |-  ( ( D C_ ( CC \ ( -oo (,] 0 ) ) /\ ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) ) -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) |` D ) e. ( D -cn-> CC ) ) | 
						
							| 29 | 2 26 28 | syl2anc |  |-  ( ph -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) |` D ) e. ( D -cn-> CC ) ) | 
						
							| 30 | 4 29 | eqeltrrd |  |-  ( ph -> ( x e. D |-> ( x ^c A ) ) e. ( D -cn-> CC ) ) |