| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 2 |  | rpge0 |  |-  ( A e. RR+ -> 0 <_ A ) | 
						
							| 3 |  | remsqsqrt |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) x. ( sqrt ` A ) ) = A ) | 
						
							| 4 | 1 2 3 | syl2anc |  |-  ( A e. RR+ -> ( ( sqrt ` A ) x. ( sqrt ` A ) ) = A ) | 
						
							| 5 | 4 | oveq1d |  |-  ( A e. RR+ -> ( ( ( sqrt ` A ) x. ( sqrt ` A ) ) / ( sqrt ` A ) ) = ( A / ( sqrt ` A ) ) ) | 
						
							| 6 | 1 | recnd |  |-  ( A e. RR+ -> A e. CC ) | 
						
							| 7 | 6 | sqrtcld |  |-  ( A e. RR+ -> ( sqrt ` A ) e. CC ) | 
						
							| 8 |  | rpsqrtcl |  |-  ( A e. RR+ -> ( sqrt ` A ) e. RR+ ) | 
						
							| 9 | 8 | rpne0d |  |-  ( A e. RR+ -> ( sqrt ` A ) =/= 0 ) | 
						
							| 10 | 7 7 9 | divcan4d |  |-  ( A e. RR+ -> ( ( ( sqrt ` A ) x. ( sqrt ` A ) ) / ( sqrt ` A ) ) = ( sqrt ` A ) ) | 
						
							| 11 | 5 10 | eqtr3d |  |-  ( A e. RR+ -> ( A / ( sqrt ` A ) ) = ( sqrt ` A ) ) |