Metamath Proof Explorer


Theorem divsqrtid

Description: A real number divided by its square root. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Assertion divsqrtid A+AA=A

Proof

Step Hyp Ref Expression
1 rpre A+A
2 rpge0 A+0A
3 remsqsqrt A0AAA=A
4 1 2 3 syl2anc A+AA=A
5 4 oveq1d A+AAA=AA
6 1 recnd A+A
7 6 sqrtcld A+A
8 rpsqrtcl A+A+
9 8 rpne0d A+A0
10 7 7 9 divcan4d A+AAA=A
11 5 10 eqtr3d A+AA=A