Step |
Hyp |
Ref |
Expression |
1 |
|
iblsplitf.X |
|- F/ x ph |
2 |
|
iblsplitf.vol |
|- ( ph -> ( vol* ` ( A i^i B ) ) = 0 ) |
3 |
|
iblsplitf.u |
|- ( ph -> U = ( A u. B ) ) |
4 |
|
iblsplitf.c |
|- ( ( ph /\ x e. U ) -> C e. CC ) |
5 |
|
iblsplitf.a |
|- ( ph -> ( x e. A |-> C ) e. L^1 ) |
6 |
|
iblsplitf.b |
|- ( ph -> ( x e. B |-> C ) e. L^1 ) |
7 |
|
nfcv |
|- F/_ y C |
8 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
9 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
10 |
7 8 9
|
cbvmpt |
|- ( x e. U |-> C ) = ( y e. U |-> [_ y / x ]_ C ) |
11 |
|
simpr |
|- ( ( ph /\ y e. U ) -> y e. U ) |
12 |
|
nfv |
|- F/ x y e. U |
13 |
1 12
|
nfan |
|- F/ x ( ph /\ y e. U ) |
14 |
4
|
adantlr |
|- ( ( ( ph /\ y e. U ) /\ x e. U ) -> C e. CC ) |
15 |
14
|
ex |
|- ( ( ph /\ y e. U ) -> ( x e. U -> C e. CC ) ) |
16 |
13 15
|
ralrimi |
|- ( ( ph /\ y e. U ) -> A. x e. U C e. CC ) |
17 |
|
rspcsbela |
|- ( ( y e. U /\ A. x e. U C e. CC ) -> [_ y / x ]_ C e. CC ) |
18 |
11 16 17
|
syl2anc |
|- ( ( ph /\ y e. U ) -> [_ y / x ]_ C e. CC ) |
19 |
9
|
equcoms |
|- ( y = x -> C = [_ y / x ]_ C ) |
20 |
19
|
eqcomd |
|- ( y = x -> [_ y / x ]_ C = C ) |
21 |
8 7 20
|
cbvmpt |
|- ( y e. A |-> [_ y / x ]_ C ) = ( x e. A |-> C ) |
22 |
21 5
|
eqeltrid |
|- ( ph -> ( y e. A |-> [_ y / x ]_ C ) e. L^1 ) |
23 |
8 7 20
|
cbvmpt |
|- ( y e. B |-> [_ y / x ]_ C ) = ( x e. B |-> C ) |
24 |
23 6
|
eqeltrid |
|- ( ph -> ( y e. B |-> [_ y / x ]_ C ) e. L^1 ) |
25 |
2 3 18 22 24
|
iblsplit |
|- ( ph -> ( y e. U |-> [_ y / x ]_ C ) e. L^1 ) |
26 |
10 25
|
eqeltrid |
|- ( ph -> ( x e. U |-> C ) e. L^1 ) |