| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iblsplitf.X |
|
| 2 |
|
iblsplitf.vol |
|
| 3 |
|
iblsplitf.u |
|
| 4 |
|
iblsplitf.c |
|
| 5 |
|
iblsplitf.a |
|
| 6 |
|
iblsplitf.b |
|
| 7 |
|
nfcv |
|
| 8 |
|
nfcsb1v |
|
| 9 |
|
csbeq1a |
|
| 10 |
7 8 9
|
cbvmpt |
|
| 11 |
|
simpr |
|
| 12 |
|
nfv |
|
| 13 |
1 12
|
nfan |
|
| 14 |
4
|
adantlr |
|
| 15 |
14
|
ex |
|
| 16 |
13 15
|
ralrimi |
|
| 17 |
|
rspcsbela |
|
| 18 |
11 16 17
|
syl2anc |
|
| 19 |
9
|
equcoms |
|
| 20 |
19
|
eqcomd |
|
| 21 |
8 7 20
|
cbvmpt |
|
| 22 |
21 5
|
eqeltrid |
|
| 23 |
8 7 20
|
cbvmpt |
|
| 24 |
23 6
|
eqeltrid |
|
| 25 |
2 3 18 22 24
|
iblsplit |
|
| 26 |
10 25
|
eqeltrid |
|