Metamath Proof Explorer


Theorem iblsplit

Description: The union of two integrable functions is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iblsplit.1 φ vol * A B = 0
iblsplit.2 φ U = A B
iblsplit.3 φ x U C
iblsplit.4 φ x A C 𝐿 1
iblsplit.5 φ x B C 𝐿 1
Assertion iblsplit φ x U C 𝐿 1

Proof

Step Hyp Ref Expression
1 iblsplit.1 φ vol * A B = 0
2 iblsplit.2 φ U = A B
3 iblsplit.3 φ x U C
4 iblsplit.4 φ x A C 𝐿 1
5 iblsplit.5 φ x B C 𝐿 1
6 3 fmpttd φ x U C : U
7 ssun1 A A B
8 7 2 sseqtrrid φ A U
9 8 resmptd φ x U C A = x A C
10 eqidd φ x if x A 0 C i y C i y 0 = x if x A 0 C i y C i y 0
11 eqidd φ x A C i y = C i y
12 8 sseld φ x A x U
13 12 imdistani φ x A φ x U
14 13 3 syl φ x A C
15 10 11 14 isibl2 φ x A C 𝐿 1 x A C MblFn y 0 3 2 x if x A 0 C i y C i y 0
16 4 15 mpbid φ x A C MblFn y 0 3 2 x if x A 0 C i y C i y 0
17 16 simpld φ x A C MblFn
18 9 17 eqeltrd φ x U C A MblFn
19 ssun2 B A B
20 19 2 sseqtrrid φ B U
21 20 resmptd φ x U C B = x B C
22 eqidd φ x if x B 0 C i y C i y 0 = x if x B 0 C i y C i y 0
23 eqidd φ x B C i y = C i y
24 20 sseld φ x B x U
25 24 imdistani φ x B φ x U
26 25 3 syl φ x B C
27 22 23 26 isibl2 φ x B C 𝐿 1 x B C MblFn y 0 3 2 x if x B 0 C i y C i y 0
28 5 27 mpbid φ x B C MblFn y 0 3 2 x if x B 0 C i y C i y 0
29 28 simpld φ x B C MblFn
30 21 29 eqeltrd φ x U C B MblFn
31 2 eqcomd φ A B = U
32 6 18 30 31 mbfres2cn φ x U C MblFn
33 17 14 mbfdm2 φ A dom vol
34 33 adantr φ k 0 3 A dom vol
35 29 26 mbfdm2 φ B dom vol
36 35 adantr φ k 0 3 B dom vol
37 1 adantr φ k 0 3 vol * A B = 0
38 2 adantr φ k 0 3 U = A B
39 3 adantlr φ k 0 3 x U C
40 ax-icn i
41 40 a1i k 0 3 i
42 elfznn0 k 0 3 k 0
43 41 42 expcld k 0 3 i k
44 43 ad2antlr φ k 0 3 x U i k
45 40 a1i φ k 0 3 x U i
46 ine0 i 0
47 46 a1i φ k 0 3 x U i 0
48 elfzelz k 0 3 k
49 48 ad2antlr φ k 0 3 x U k
50 45 47 49 expne0d φ k 0 3 x U i k 0
51 39 44 50 divcld φ k 0 3 x U C i k
52 51 recld φ k 0 3 x U C i k
53 52 rexrd φ k 0 3 x U C i k *
54 53 adantr φ k 0 3 x U 0 C i k C i k *
55 simpr φ k 0 3 x U 0 C i k 0 C i k
56 pnfge C i k * C i k +∞
57 54 56 syl φ k 0 3 x U 0 C i k C i k +∞
58 0xr 0 *
59 pnfxr +∞ *
60 elicc1 0 * +∞ * C i k 0 +∞ C i k * 0 C i k C i k +∞
61 58 59 60 mp2an C i k 0 +∞ C i k * 0 C i k C i k +∞
62 54 55 57 61 syl3anbrc φ k 0 3 x U 0 C i k C i k 0 +∞
63 0e0iccpnf 0 0 +∞
64 63 a1i φ k 0 3 x U ¬ 0 C i k 0 0 +∞
65 62 64 ifclda φ k 0 3 x U if 0 C i k C i k 0 0 +∞
66 eqid x if x A if 0 C i k C i k 0 0 = x if x A if 0 C i k C i k 0 0
67 eqid x if x B if 0 C i k C i k 0 0 = x if x B if 0 C i k C i k 0 0
68 ifan if x U 0 C i k C i k 0 = if x U if 0 C i k C i k 0 0
69 68 mpteq2i x if x U 0 C i k C i k 0 = x if x U if 0 C i k C i k 0 0
70 ifan if x A 0 C i k C i k 0 = if x A if 0 C i k C i k 0 0
71 70 eqcomi if x A if 0 C i k C i k 0 0 = if x A 0 C i k C i k 0
72 71 mpteq2i x if x A if 0 C i k C i k 0 0 = x if x A 0 C i k C i k 0
73 72 a1i φ k 0 3 x if x A if 0 C i k C i k 0 0 = x if x A 0 C i k C i k 0
74 73 fveq2d φ k 0 3 2 x if x A if 0 C i k C i k 0 0 = 2 x if x A 0 C i k C i k 0
75 eqidd φ x if x A 0 C i k C i k 0 = x if x A 0 C i k C i k 0
76 eqidd φ x A C i k = C i k
77 75 76 14 isibl2 φ x A C 𝐿 1 x A C MblFn k 0 3 2 x if x A 0 C i k C i k 0
78 4 77 mpbid φ x A C MblFn k 0 3 2 x if x A 0 C i k C i k 0
79 78 simprd φ k 0 3 2 x if x A 0 C i k C i k 0
80 79 r19.21bi φ k 0 3 2 x if x A 0 C i k C i k 0
81 74 80 eqeltrd φ k 0 3 2 x if x A if 0 C i k C i k 0 0
82 ifan if x B 0 C i k C i k 0 = if x B if 0 C i k C i k 0 0
83 82 eqcomi if x B if 0 C i k C i k 0 0 = if x B 0 C i k C i k 0
84 83 mpteq2i x if x B if 0 C i k C i k 0 0 = x if x B 0 C i k C i k 0
85 84 fveq2i 2 x if x B if 0 C i k C i k 0 0 = 2 x if x B 0 C i k C i k 0
86 eqidd φ x if x B 0 C i k C i k 0 = x if x B 0 C i k C i k 0
87 eqidd φ x B C i k = C i k
88 86 87 26 isibl2 φ x B C 𝐿 1 x B C MblFn k 0 3 2 x if x B 0 C i k C i k 0
89 5 88 mpbid φ x B C MblFn k 0 3 2 x if x B 0 C i k C i k 0
90 89 simprd φ k 0 3 2 x if x B 0 C i k C i k 0
91 90 r19.21bi φ k 0 3 2 x if x B 0 C i k C i k 0
92 85 91 eqeltrid φ k 0 3 2 x if x B if 0 C i k C i k 0 0
93 34 36 37 38 65 66 67 69 81 92 itg2split φ k 0 3 2 x if x U 0 C i k C i k 0 = 2 x if x A if 0 C i k C i k 0 0 + 2 x if x B if 0 C i k C i k 0 0
94 81 92 readdcld φ k 0 3 2 x if x A if 0 C i k C i k 0 0 + 2 x if x B if 0 C i k C i k 0 0
95 93 94 eqeltrd φ k 0 3 2 x if x U 0 C i k C i k 0
96 95 ralrimiva φ k 0 3 2 x if x U 0 C i k C i k 0
97 eqidd φ x if x U 0 C i k C i k 0 = x if x U 0 C i k C i k 0
98 eqidd φ x U C i k = C i k
99 97 98 3 isibl2 φ x U C 𝐿 1 x U C MblFn k 0 3 2 x if x U 0 C i k C i k 0
100 32 96 99 mpbir2and φ x U C 𝐿 1