Metamath Proof Explorer


Theorem icccmpALT

Description: A closed interval in RR is compact. Alternate proof of icccmp using the Heine-Borel theorem heibor . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 14-Aug-2014) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses icccmpALT.1
|- J = ( A [,] B )
icccmpALT.2
|- M = ( ( abs o. - ) |` ( J X. J ) )
icccmpALT.3
|- T = ( MetOpen ` M )
Assertion icccmpALT
|- ( ( A e. RR /\ B e. RR ) -> T e. Comp )

Proof

Step Hyp Ref Expression
1 icccmpALT.1
 |-  J = ( A [,] B )
2 icccmpALT.2
 |-  M = ( ( abs o. - ) |` ( J X. J ) )
3 icccmpALT.3
 |-  T = ( MetOpen ` M )
4 icccld
 |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) )
5 1 4 eqeltrid
 |-  ( ( A e. RR /\ B e. RR ) -> J e. ( Clsd ` ( topGen ` ran (,) ) ) )
6 1 2 iccbnd
 |-  ( ( A e. RR /\ B e. RR ) -> M e. ( Bnd ` J ) )
7 iccssre
 |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR )
8 1 7 eqsstrid
 |-  ( ( A e. RR /\ B e. RR ) -> J C_ RR )
9 eqid
 |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) )
10 2 3 9 reheibor
 |-  ( J C_ RR -> ( T e. Comp <-> ( J e. ( Clsd ` ( topGen ` ran (,) ) ) /\ M e. ( Bnd ` J ) ) ) )
11 8 10 syl
 |-  ( ( A e. RR /\ B e. RR ) -> ( T e. Comp <-> ( J e. ( Clsd ` ( topGen ` ran (,) ) ) /\ M e. ( Bnd ` J ) ) ) )
12 5 6 11 mpbir2and
 |-  ( ( A e. RR /\ B e. RR ) -> T e. Comp )