Step |
Hyp |
Ref |
Expression |
1 |
|
icccmpALT.1 |
|- J = ( A [,] B ) |
2 |
|
icccmpALT.2 |
|- M = ( ( abs o. - ) |` ( J X. J ) ) |
3 |
|
icccmpALT.3 |
|- T = ( MetOpen ` M ) |
4 |
|
icccld |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
5 |
1 4
|
eqeltrid |
|- ( ( A e. RR /\ B e. RR ) -> J e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
6 |
1 2
|
iccbnd |
|- ( ( A e. RR /\ B e. RR ) -> M e. ( Bnd ` J ) ) |
7 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
8 |
1 7
|
eqsstrid |
|- ( ( A e. RR /\ B e. RR ) -> J C_ RR ) |
9 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
10 |
2 3 9
|
reheibor |
|- ( J C_ RR -> ( T e. Comp <-> ( J e. ( Clsd ` ( topGen ` ran (,) ) ) /\ M e. ( Bnd ` J ) ) ) ) |
11 |
8 10
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( T e. Comp <-> ( J e. ( Clsd ` ( topGen ` ran (,) ) ) /\ M e. ( Bnd ` J ) ) ) ) |
12 |
5 6 11
|
mpbir2and |
|- ( ( A e. RR /\ B e. RR ) -> T e. Comp ) |