| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icccmpALT.1 |  |-  J = ( A [,] B ) | 
						
							| 2 |  | icccmpALT.2 |  |-  M = ( ( abs o. - ) |` ( J X. J ) ) | 
						
							| 3 |  | icccmpALT.3 |  |-  T = ( MetOpen ` M ) | 
						
							| 4 |  | icccld |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 5 | 1 4 | eqeltrid |  |-  ( ( A e. RR /\ B e. RR ) -> J e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 6 | 1 2 | iccbnd |  |-  ( ( A e. RR /\ B e. RR ) -> M e. ( Bnd ` J ) ) | 
						
							| 7 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 8 | 1 7 | eqsstrid |  |-  ( ( A e. RR /\ B e. RR ) -> J C_ RR ) | 
						
							| 9 |  | eqid |  |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) ) | 
						
							| 10 | 2 3 9 | reheibor |  |-  ( J C_ RR -> ( T e. Comp <-> ( J e. ( Clsd ` ( topGen ` ran (,) ) ) /\ M e. ( Bnd ` J ) ) ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( T e. Comp <-> ( J e. ( Clsd ` ( topGen ` ran (,) ) ) /\ M e. ( Bnd ` J ) ) ) ) | 
						
							| 12 | 5 6 11 | mpbir2and |  |-  ( ( A e. RR /\ B e. RR ) -> T e. Comp ) |