| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icccmpALT.1 | ⊢ 𝐽  =  ( 𝐴 [,] 𝐵 ) | 
						
							| 2 |  | icccmpALT.2 | ⊢ 𝑀  =  ( ( abs  ∘   −  )  ↾  ( 𝐽  ×  𝐽 ) ) | 
						
							| 3 |  | icccmpALT.3 | ⊢ 𝑇  =  ( MetOpen ‘ 𝑀 ) | 
						
							| 4 |  | icccld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 5 | 1 4 | eqeltrid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐽  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 6 | 1 2 | iccbnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝑀  ∈  ( Bnd ‘ 𝐽 ) ) | 
						
							| 7 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 8 | 1 7 | eqsstrid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐽  ⊆  ℝ ) | 
						
							| 9 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 10 | 2 3 9 | reheibor | ⊢ ( 𝐽  ⊆  ℝ  →  ( 𝑇  ∈  Comp  ↔  ( 𝐽  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) )  ∧  𝑀  ∈  ( Bnd ‘ 𝐽 ) ) ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑇  ∈  Comp  ↔  ( 𝐽  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) )  ∧  𝑀  ∈  ( Bnd ‘ 𝐽 ) ) ) ) | 
						
							| 12 | 5 6 11 | mpbir2and | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝑇  ∈  Comp ) |