| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icccmpALT.1 |
⊢ 𝐽 = ( 𝐴 [,] 𝐵 ) |
| 2 |
|
icccmpALT.2 |
⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( 𝐽 × 𝐽 ) ) |
| 3 |
|
icccmpALT.3 |
⊢ 𝑇 = ( MetOpen ‘ 𝑀 ) |
| 4 |
|
icccld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 5 |
1 4
|
eqeltrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐽 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 6 |
1 2
|
iccbnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑀 ∈ ( Bnd ‘ 𝐽 ) ) |
| 7 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 8 |
1 7
|
eqsstrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐽 ⊆ ℝ ) |
| 9 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 10 |
2 3 9
|
reheibor |
⊢ ( 𝐽 ⊆ ℝ → ( 𝑇 ∈ Comp ↔ ( 𝐽 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑀 ∈ ( Bnd ‘ 𝐽 ) ) ) ) |
| 11 |
8 10
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑇 ∈ Comp ↔ ( 𝐽 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑀 ∈ ( Bnd ‘ 𝐽 ) ) ) ) |
| 12 |
5 6 11
|
mpbir2and |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑇 ∈ Comp ) |