Metamath Proof Explorer


Theorem icccmpALT

Description: A closed interval in RR is compact. Alternate proof of icccmp using the Heine-Borel theorem heibor . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 14-Aug-2014) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses icccmpALT.1 𝐽 = ( 𝐴 [,] 𝐵 )
icccmpALT.2 𝑀 = ( ( abs ∘ − ) ↾ ( 𝐽 × 𝐽 ) )
icccmpALT.3 𝑇 = ( MetOpen ‘ 𝑀 )
Assertion icccmpALT ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑇 ∈ Comp )

Proof

Step Hyp Ref Expression
1 icccmpALT.1 𝐽 = ( 𝐴 [,] 𝐵 )
2 icccmpALT.2 𝑀 = ( ( abs ∘ − ) ↾ ( 𝐽 × 𝐽 ) )
3 icccmpALT.3 𝑇 = ( MetOpen ‘ 𝑀 )
4 icccld ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) )
5 1 4 eqeltrid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐽 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) )
6 1 2 iccbnd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑀 ∈ ( Bnd ‘ 𝐽 ) )
7 iccssre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
8 1 7 eqsstrid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐽 ⊆ ℝ )
9 eqid ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) )
10 2 3 9 reheibor ( 𝐽 ⊆ ℝ → ( 𝑇 ∈ Comp ↔ ( 𝐽 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑀 ∈ ( Bnd ‘ 𝐽 ) ) ) )
11 8 10 syl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑇 ∈ Comp ↔ ( 𝐽 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑀 ∈ ( Bnd ‘ 𝐽 ) ) ) )
12 5 6 11 mpbir2and ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑇 ∈ Comp )