Metamath Proof Explorer


Theorem icccmpALT

Description: A closed interval in RR is compact. Alternate proof of icccmp using the Heine-Borel theorem heibor . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 14-Aug-2014) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses icccmpALT.1 J = A B
icccmpALT.2 M = abs J × J
icccmpALT.3 T = MetOpen M
Assertion icccmpALT A B T Comp

Proof

Step Hyp Ref Expression
1 icccmpALT.1 J = A B
2 icccmpALT.2 M = abs J × J
3 icccmpALT.3 T = MetOpen M
4 icccld A B A B Clsd topGen ran .
5 1 4 eqeltrid A B J Clsd topGen ran .
6 1 2 iccbnd A B M Bnd J
7 iccssre A B A B
8 1 7 eqsstrid A B J
9 eqid topGen ran . = topGen ran .
10 2 3 9 reheibor J T Comp J Clsd topGen ran . M Bnd J
11 8 10 syl A B T Comp J Clsd topGen ran . M Bnd J
12 5 6 11 mpbir2and A B T Comp