Metamath Proof Explorer


Theorem icccmpALT

Description: A closed interval in RR is compact. Alternate proof of icccmp using the Heine-Borel theorem heibor . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 14-Aug-2014) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses icccmpALT.1 J=AB
icccmpALT.2 M=absJ×J
icccmpALT.3 T=MetOpenM
Assertion icccmpALT ABTComp

Proof

Step Hyp Ref Expression
1 icccmpALT.1 J=AB
2 icccmpALT.2 M=absJ×J
3 icccmpALT.3 T=MetOpenM
4 icccld ABABClsdtopGenran.
5 1 4 eqeltrid ABJClsdtopGenran.
6 1 2 iccbnd ABMBndJ
7 iccssre ABAB
8 1 7 eqsstrid ABJ
9 eqid topGenran.=topGenran.
10 2 3 9 reheibor JTCompJClsdtopGenran.MBndJ
11 8 10 syl ABTCompJClsdtopGenran.MBndJ
12 5 6 11 mpbir2and ABTComp