Step |
Hyp |
Ref |
Expression |
1 |
|
iccbnd.1 |
|
2 |
|
iccbnd.2 |
|
3 |
|
cnmet |
|
4 |
|
iccssre |
|
5 |
1 4
|
eqsstrid |
|
6 |
|
ax-resscn |
|
7 |
5 6
|
sstrdi |
|
8 |
|
metres2 |
|
9 |
3 7 8
|
sylancr |
|
10 |
2 9
|
eqeltrid |
|
11 |
|
resubcl |
|
12 |
11
|
ancoms |
|
13 |
2
|
oveqi |
|
14 |
|
ovres |
|
15 |
14
|
adantl |
|
16 |
13 15
|
syl5eq |
|
17 |
7
|
sselda |
|
18 |
7
|
sselda |
|
19 |
17 18
|
anim12dan |
|
20 |
|
eqid |
|
21 |
20
|
cnmetdval |
|
22 |
19 21
|
syl |
|
23 |
16 22
|
eqtrd |
|
24 |
|
simprr |
|
25 |
24 1
|
eleqtrdi |
|
26 |
|
elicc2 |
|
27 |
26
|
adantr |
|
28 |
25 27
|
mpbid |
|
29 |
28
|
simp1d |
|
30 |
12
|
adantr |
|
31 |
|
resubcl |
|
32 |
29 30 31
|
syl2anc |
|
33 |
|
simpll |
|
34 |
|
simprl |
|
35 |
34 1
|
eleqtrdi |
|
36 |
|
elicc2 |
|
37 |
36
|
adantr |
|
38 |
35 37
|
mpbid |
|
39 |
38
|
simp1d |
|
40 |
|
simplr |
|
41 |
28
|
simp3d |
|
42 |
29 40 33 41
|
lesub1dd |
|
43 |
29 33 30 42
|
subled |
|
44 |
38
|
simp2d |
|
45 |
32 33 39 43 44
|
letrd |
|
46 |
29 30
|
readdcld |
|
47 |
38
|
simp3d |
|
48 |
28
|
simp2d |
|
49 |
33 29 40 48
|
lesub2dd |
|
50 |
40 29 30
|
lesubadd2d |
|
51 |
49 50
|
mpbid |
|
52 |
39 40 46 47 51
|
letrd |
|
53 |
39 29 30
|
absdifled |
|
54 |
45 52 53
|
mpbir2and |
|
55 |
23 54
|
eqbrtrd |
|
56 |
55
|
ralrimivva |
|
57 |
|
breq2 |
|
58 |
57
|
2ralbidv |
|
59 |
58
|
rspcev |
|
60 |
12 56 59
|
syl2anc |
|
61 |
|
isbnd3b |
|
62 |
10 60 61
|
sylanbrc |
|