Step |
Hyp |
Ref |
Expression |
1 |
|
reheibor.2 |
|
2 |
|
reheibor.3 |
|
3 |
|
reheibor.4 |
|
4 |
|
df1o2 |
|
5 |
|
snfi |
|
6 |
4 5
|
eqeltri |
|
7 |
|
imassrn |
|
8 |
|
0ex |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
9 10
|
ismrer1 |
|
12 |
8 11
|
ax-mp |
|
13 |
4
|
fveq2i |
|
14 |
13
|
oveq2i |
|
15 |
12 14
|
eleqtrri |
|
16 |
9
|
rexmet |
|
17 |
|
eqid |
|
18 |
17
|
rrnmet |
|
19 |
|
metxmet |
|
20 |
6 18 19
|
mp2b |
|
21 |
|
isismty |
|
22 |
16 20 21
|
mp2an |
|
23 |
15 22
|
mpbi |
|
24 |
23
|
simpli |
|
25 |
|
f1of |
|
26 |
|
frn |
|
27 |
24 25 26
|
mp2b |
|
28 |
7 27
|
sstri |
|
29 |
28
|
a1i |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
17 30 31 32
|
rrnheibor |
|
34 |
6 29 33
|
sylancr |
|
35 |
|
cnxmet |
|
36 |
|
id |
|
37 |
|
ax-resscn |
|
38 |
36 37
|
sstrdi |
|
39 |
|
xmetres2 |
|
40 |
35 38 39
|
sylancr |
|
41 |
1 40
|
eqeltrid |
|
42 |
|
xmetres2 |
|
43 |
20 29 42
|
sylancr |
|
44 |
2 31
|
ismtyhmeo |
|
45 |
41 43 44
|
syl2anc |
|
46 |
16
|
a1i |
|
47 |
20
|
a1i |
|
48 |
15
|
a1i |
|
49 |
|
eqid |
|
50 |
|
eqid |
|
51 |
49 50 30
|
ismtyres |
|
52 |
46 47 48 36 51
|
syl22anc |
|
53 |
|
xpss12 |
|
54 |
53
|
anidms |
|
55 |
54
|
resabs1d |
|
56 |
55 1
|
eqtr4di |
|
57 |
56
|
oveq1d |
|
58 |
52 57
|
eleqtrd |
|
59 |
45 58
|
sseldd |
|
60 |
|
hmphi |
|
61 |
59 60
|
syl |
|
62 |
|
cmphmph |
|
63 |
|
hmphsym |
|
64 |
|
cmphmph |
|
65 |
63 64
|
syl |
|
66 |
62 65
|
impbid |
|
67 |
61 66
|
syl |
|
68 |
|
eqid |
|
69 |
9 68
|
tgioo |
|
70 |
3 69
|
eqtri |
|
71 |
70 32
|
ismtyhmeo |
|
72 |
16 20 71
|
mp2an |
|
73 |
72 15
|
sselii |
|
74 |
|
retopon |
|
75 |
3 74
|
eqeltri |
|
76 |
75
|
toponunii |
|
77 |
76
|
hmeocld |
|
78 |
73 36 77
|
sylancr |
|
79 |
|
ismtybnd |
|
80 |
41 43 58 79
|
syl3anc |
|
81 |
78 80
|
anbi12d |
|
82 |
34 67 81
|
3bitr4d |
|