| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reheibor.2 |  | 
						
							| 2 |  | reheibor.3 |  | 
						
							| 3 |  | reheibor.4 |  | 
						
							| 4 |  | df1o2 |  | 
						
							| 5 |  | snfi |  | 
						
							| 6 | 4 5 | eqeltri |  | 
						
							| 7 |  | imassrn |  | 
						
							| 8 |  | 0ex |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 9 10 | ismrer1 |  | 
						
							| 12 | 8 11 | ax-mp |  | 
						
							| 13 | 4 | fveq2i |  | 
						
							| 14 | 13 | oveq2i |  | 
						
							| 15 | 12 14 | eleqtrri |  | 
						
							| 16 | 9 | rexmet |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 | rrnmet |  | 
						
							| 19 |  | metxmet |  | 
						
							| 20 | 6 18 19 | mp2b |  | 
						
							| 21 |  | isismty |  | 
						
							| 22 | 16 20 21 | mp2an |  | 
						
							| 23 | 15 22 | mpbi |  | 
						
							| 24 | 23 | simpli |  | 
						
							| 25 |  | f1of |  | 
						
							| 26 |  | frn |  | 
						
							| 27 | 24 25 26 | mp2b |  | 
						
							| 28 | 7 27 | sstri |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 17 30 31 32 | rrnheibor |  | 
						
							| 34 | 6 29 33 | sylancr |  | 
						
							| 35 |  | cnxmet |  | 
						
							| 36 |  | id |  | 
						
							| 37 |  | ax-resscn |  | 
						
							| 38 | 36 37 | sstrdi |  | 
						
							| 39 |  | xmetres2 |  | 
						
							| 40 | 35 38 39 | sylancr |  | 
						
							| 41 | 1 40 | eqeltrid |  | 
						
							| 42 |  | xmetres2 |  | 
						
							| 43 | 20 29 42 | sylancr |  | 
						
							| 44 | 2 31 | ismtyhmeo |  | 
						
							| 45 | 41 43 44 | syl2anc |  | 
						
							| 46 | 16 | a1i |  | 
						
							| 47 | 20 | a1i |  | 
						
							| 48 | 15 | a1i |  | 
						
							| 49 |  | eqid |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 | 49 50 30 | ismtyres |  | 
						
							| 52 | 46 47 48 36 51 | syl22anc |  | 
						
							| 53 |  | xpss12 |  | 
						
							| 54 | 53 | anidms |  | 
						
							| 55 | 54 | resabs1d |  | 
						
							| 56 | 55 1 | eqtr4di |  | 
						
							| 57 | 56 | oveq1d |  | 
						
							| 58 | 52 57 | eleqtrd |  | 
						
							| 59 | 45 58 | sseldd |  | 
						
							| 60 |  | hmphi |  | 
						
							| 61 | 59 60 | syl |  | 
						
							| 62 |  | cmphmph |  | 
						
							| 63 |  | hmphsym |  | 
						
							| 64 |  | cmphmph |  | 
						
							| 65 | 63 64 | syl |  | 
						
							| 66 | 62 65 | impbid |  | 
						
							| 67 | 61 66 | syl |  | 
						
							| 68 |  | eqid |  | 
						
							| 69 | 9 68 | tgioo |  | 
						
							| 70 | 3 69 | eqtri |  | 
						
							| 71 | 70 32 | ismtyhmeo |  | 
						
							| 72 | 16 20 71 | mp2an |  | 
						
							| 73 | 72 15 | sselii |  | 
						
							| 74 |  | retopon |  | 
						
							| 75 | 3 74 | eqeltri |  | 
						
							| 76 | 75 | toponunii |  | 
						
							| 77 | 76 | hmeocld |  | 
						
							| 78 | 73 36 77 | sylancr |  | 
						
							| 79 |  | ismtybnd |  | 
						
							| 80 | 41 43 58 79 | syl3anc |  | 
						
							| 81 | 78 80 | anbi12d |  | 
						
							| 82 | 34 67 81 | 3bitr4d |  |