| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismtyres.2 |
|
| 2 |
|
ismtyres.3 |
|
| 3 |
|
ismtyres.4 |
|
| 4 |
|
isismty |
|
| 5 |
4
|
simprbda |
|
| 6 |
5
|
adantrr |
|
| 7 |
|
f1of1 |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
simprr |
|
| 10 |
|
f1ores |
|
| 11 |
8 9 10
|
syl2anc |
|
| 12 |
4
|
biimpa |
|
| 13 |
12
|
adantrr |
|
| 14 |
|
ssel |
|
| 15 |
|
ssel |
|
| 16 |
14 15
|
anim12d |
|
| 17 |
16
|
imp |
|
| 18 |
|
oveq1 |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
oveq1d |
|
| 21 |
18 20
|
eqeq12d |
|
| 22 |
|
oveq2 |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
oveq2d |
|
| 25 |
22 24
|
eqeq12d |
|
| 26 |
21 25
|
rspc2v |
|
| 27 |
17 26
|
syl |
|
| 28 |
27
|
imp |
|
| 29 |
28
|
an32s |
|
| 30 |
29
|
adantlrl |
|
| 31 |
30
|
adantlll |
|
| 32 |
2
|
oveqi |
|
| 33 |
|
ovres |
|
| 34 |
32 33
|
eqtrid |
|
| 35 |
34
|
adantl |
|
| 36 |
|
fvres |
|
| 37 |
36
|
ad2antrl |
|
| 38 |
|
fvres |
|
| 39 |
38
|
ad2antll |
|
| 40 |
37 39
|
oveq12d |
|
| 41 |
3
|
oveqi |
|
| 42 |
|
f1ofun |
|
| 43 |
42
|
adantl |
|
| 44 |
|
f1odm |
|
| 45 |
44
|
sseq2d |
|
| 46 |
45
|
biimparc |
|
| 47 |
|
funfvima2 |
|
| 48 |
43 46 47
|
syl2anc |
|
| 49 |
48
|
imp |
|
| 50 |
49 1
|
eleqtrrdi |
|
| 51 |
50
|
adantrr |
|
| 52 |
|
funfvima2 |
|
| 53 |
43 46 52
|
syl2anc |
|
| 54 |
53
|
imp |
|
| 55 |
54 1
|
eleqtrrdi |
|
| 56 |
55
|
adantrl |
|
| 57 |
51 56
|
ovresd |
|
| 58 |
41 57
|
eqtrid |
|
| 59 |
40 58
|
eqtrd |
|
| 60 |
59
|
adantlrr |
|
| 61 |
60
|
adantlll |
|
| 62 |
31 35 61
|
3eqtr4d |
|
| 63 |
62
|
ralrimivva |
|
| 64 |
63
|
adantlrl |
|
| 65 |
13 64
|
mpdan |
|
| 66 |
|
xmetres2 |
|
| 67 |
2 66
|
eqeltrid |
|
| 68 |
67
|
ad2ant2rl |
|
| 69 |
|
simplr |
|
| 70 |
|
imassrn |
|
| 71 |
1 70
|
eqsstri |
|
| 72 |
|
f1ofo |
|
| 73 |
|
forn |
|
| 74 |
6 72 73
|
3syl |
|
| 75 |
71 74
|
sseqtrid |
|
| 76 |
|
xmetres2 |
|
| 77 |
69 75 76
|
syl2anc |
|
| 78 |
3 77
|
eqeltrid |
|
| 79 |
1
|
fveq2i |
|
| 80 |
78 79
|
eleqtrdi |
|
| 81 |
|
isismty |
|
| 82 |
68 80 81
|
syl2anc |
|
| 83 |
11 65 82
|
mpbir2and |
|