| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismtyres.2 |
⊢ 𝐵 = ( 𝐹 “ 𝐴 ) |
| 2 |
|
ismtyres.3 |
⊢ 𝑆 = ( 𝑀 ↾ ( 𝐴 × 𝐴 ) ) |
| 3 |
|
ismtyres.4 |
⊢ 𝑇 = ( 𝑁 ↾ ( 𝐵 × 𝐵 ) ) |
| 4 |
|
isismty |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ↔ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 5 |
4
|
simprbda |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| 6 |
5
|
adantrr |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| 7 |
|
f1of1 |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
| 9 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝐴 ⊆ 𝑋 ) |
| 10 |
|
f1ores |
⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ) |
| 11 |
8 9 10
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ) |
| 12 |
4
|
biimpa |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 13 |
12
|
adantrr |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 14 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝑋 → ( 𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑋 ) ) |
| 15 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝑋 → ( 𝑣 ∈ 𝐴 → 𝑣 ∈ 𝑋 ) ) |
| 16 |
14 15
|
anim12d |
⊢ ( 𝐴 ⊆ 𝑋 → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ) |
| 17 |
16
|
imp |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) |
| 18 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 𝑀 𝑦 ) = ( 𝑢 𝑀 𝑦 ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑢 ) ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 |
18 20
|
eqeq12d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑢 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑢 𝑀 𝑦 ) = ( 𝑢 𝑀 𝑣 ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑣 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
| 25 |
22 24
|
eqeq12d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 26 |
21 25
|
rspc2v |
⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 27 |
17 26
|
syl |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 28 |
27
|
imp |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
| 29 |
28
|
an32s |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
| 30 |
29
|
adantlrl |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
| 31 |
30
|
adantlll |
⊢ ( ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 𝑀 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
| 32 |
2
|
oveqi |
⊢ ( 𝑢 𝑆 𝑣 ) = ( 𝑢 ( 𝑀 ↾ ( 𝐴 × 𝐴 ) ) 𝑣 ) |
| 33 |
|
ovres |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 ( 𝑀 ↾ ( 𝐴 × 𝐴 ) ) 𝑣 ) = ( 𝑢 𝑀 𝑣 ) ) |
| 34 |
32 33
|
eqtrid |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 𝑆 𝑣 ) = ( 𝑢 𝑀 𝑣 ) ) |
| 35 |
34
|
adantl |
⊢ ( ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 𝑆 𝑣 ) = ( 𝑢 𝑀 𝑣 ) ) |
| 36 |
|
fvres |
⊢ ( 𝑢 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) = ( 𝐹 ‘ 𝑢 ) ) |
| 37 |
36
|
ad2antrl |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) = ( 𝐹 ‘ 𝑢 ) ) |
| 38 |
|
fvres |
⊢ ( 𝑣 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) = ( 𝐹 ‘ 𝑣 ) ) |
| 39 |
38
|
ad2antll |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) = ( 𝐹 ‘ 𝑣 ) ) |
| 40 |
37 39
|
oveq12d |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑇 ( 𝐹 ‘ 𝑣 ) ) ) |
| 41 |
3
|
oveqi |
⊢ ( ( 𝐹 ‘ 𝑢 ) 𝑇 ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ( 𝑁 ↾ ( 𝐵 × 𝐵 ) ) ( 𝐹 ‘ 𝑣 ) ) |
| 42 |
|
f1ofun |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → Fun 𝐹 ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → Fun 𝐹 ) |
| 44 |
|
f1odm |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → dom 𝐹 = 𝑋 ) |
| 45 |
44
|
sseq2d |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ( 𝐴 ⊆ dom 𝐹 ↔ 𝐴 ⊆ 𝑋 ) ) |
| 46 |
45
|
biimparc |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → 𝐴 ⊆ dom 𝐹 ) |
| 47 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝑢 ∈ 𝐴 → ( 𝐹 ‘ 𝑢 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
| 48 |
43 46 47
|
syl2anc |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑢 ∈ 𝐴 → ( 𝐹 ‘ 𝑢 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
| 49 |
48
|
imp |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑢 ) ∈ ( 𝐹 “ 𝐴 ) ) |
| 50 |
49 1
|
eleqtrrdi |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑢 ) ∈ 𝐵 ) |
| 51 |
50
|
adantrr |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ 𝐵 ) |
| 52 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝑣 ∈ 𝐴 → ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
| 53 |
43 46 52
|
syl2anc |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑣 ∈ 𝐴 → ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
| 54 |
53
|
imp |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 “ 𝐴 ) ) |
| 55 |
54 1
|
eleqtrrdi |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝐵 ) |
| 56 |
55
|
adantrl |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝐵 ) |
| 57 |
51 56
|
ovresd |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑢 ) ( 𝑁 ↾ ( 𝐵 × 𝐵 ) ) ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
| 58 |
41 57
|
eqtrid |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑢 ) 𝑇 ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
| 59 |
40 58
|
eqtrd |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
| 60 |
59
|
adantlrr |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
| 61 |
60
|
adantlll |
⊢ ( ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) |
| 62 |
31 35 61
|
3eqtr4d |
⊢ ( ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 𝑆 𝑣 ) = ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) ) |
| 63 |
62
|
ralrimivva |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) → ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 𝑣 ) = ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) ) |
| 64 |
63
|
adantlrl |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) → ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 𝑣 ) = ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) ) |
| 65 |
13 64
|
mpdan |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 𝑣 ) = ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) ) |
| 66 |
|
xmetres2 |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑀 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( ∞Met ‘ 𝐴 ) ) |
| 67 |
2 66
|
eqeltrid |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑆 ∈ ( ∞Met ‘ 𝐴 ) ) |
| 68 |
67
|
ad2ant2rl |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝑆 ∈ ( ∞Met ‘ 𝐴 ) ) |
| 69 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) |
| 70 |
|
imassrn |
⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 |
| 71 |
1 70
|
eqsstri |
⊢ 𝐵 ⊆ ran 𝐹 |
| 72 |
|
f1ofo |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –onto→ 𝑌 ) |
| 73 |
|
forn |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ran 𝐹 = 𝑌 ) |
| 74 |
6 72 73
|
3syl |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ran 𝐹 = 𝑌 ) |
| 75 |
71 74
|
sseqtrid |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝐵 ⊆ 𝑌 ) |
| 76 |
|
xmetres2 |
⊢ ( ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐵 ⊆ 𝑌 ) → ( 𝑁 ↾ ( 𝐵 × 𝐵 ) ) ∈ ( ∞Met ‘ 𝐵 ) ) |
| 77 |
69 75 76
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ( 𝑁 ↾ ( 𝐵 × 𝐵 ) ) ∈ ( ∞Met ‘ 𝐵 ) ) |
| 78 |
3 77
|
eqeltrid |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝑇 ∈ ( ∞Met ‘ 𝐵 ) ) |
| 79 |
1
|
fveq2i |
⊢ ( ∞Met ‘ 𝐵 ) = ( ∞Met ‘ ( 𝐹 “ 𝐴 ) ) |
| 80 |
78 79
|
eleqtrdi |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → 𝑇 ∈ ( ∞Met ‘ ( 𝐹 “ 𝐴 ) ) ) |
| 81 |
|
isismty |
⊢ ( ( 𝑆 ∈ ( ∞Met ‘ 𝐴 ) ∧ 𝑇 ∈ ( ∞Met ‘ ( 𝐹 “ 𝐴 ) ) ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( 𝑆 Ismty 𝑇 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 𝑣 ) = ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) ) ) ) |
| 82 |
68 80 81
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( 𝑆 Ismty 𝑇 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 𝑣 ) = ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑣 ) ) ) ) ) |
| 83 |
11 65 82
|
mpbir2and |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ∧ 𝐴 ⊆ 𝑋 ) ) → ( 𝐹 ↾ 𝐴 ) ∈ ( 𝑆 Ismty 𝑇 ) ) |