| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismtyres.2 | ⊢ 𝐵  =  ( 𝐹  “  𝐴 ) | 
						
							| 2 |  | ismtyres.3 | ⊢ 𝑆  =  ( 𝑀  ↾  ( 𝐴  ×  𝐴 ) ) | 
						
							| 3 |  | ismtyres.4 | ⊢ 𝑇  =  ( 𝑁  ↾  ( 𝐵  ×  𝐵 ) ) | 
						
							| 4 |  | isismty | ⊢ ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  →  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ↔  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 5 | 4 | simprbda | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐹  ∈  ( 𝑀  Ismty  𝑁 ) )  →  𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | 
						
							| 6 | 5 | adantrr | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | 
						
							| 7 |  | f1of1 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  𝐹 : 𝑋 –1-1→ 𝑌 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  𝐹 : 𝑋 –1-1→ 𝑌 ) | 
						
							| 9 |  | simprr | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  𝐴  ⊆  𝑋 ) | 
						
							| 10 |  | f1ores | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 11 | 8 9 10 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 12 | 4 | biimpa | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐹  ∈  ( 𝑀  Ismty  𝑁 ) )  →  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 13 | 12 | adantrr | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 14 |  | ssel | ⊢ ( 𝐴  ⊆  𝑋  →  ( 𝑢  ∈  𝐴  →  𝑢  ∈  𝑋 ) ) | 
						
							| 15 |  | ssel | ⊢ ( 𝐴  ⊆  𝑋  →  ( 𝑣  ∈  𝐴  →  𝑣  ∈  𝑋 ) ) | 
						
							| 16 | 14 15 | anim12d | ⊢ ( 𝐴  ⊆  𝑋  →  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( 𝑢  ∈  𝑋  ∧  𝑣  ∈  𝑋 ) ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( 𝑢  ∈  𝑋  ∧  𝑣  ∈  𝑋 ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑥  =  𝑢  →  ( 𝑥 𝑀 𝑦 )  =  ( 𝑢 𝑀 𝑦 ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑥  =  𝑢  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑥  =  𝑢  →  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 21 | 18 20 | eqeq12d | ⊢ ( 𝑥  =  𝑢  →  ( ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) )  ↔  ( 𝑢 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑦  =  𝑣  →  ( 𝑢 𝑀 𝑦 )  =  ( 𝑢 𝑀 𝑣 ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑦  =  𝑣  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑣 ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑦  =  𝑣  →  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 25 | 22 24 | eqeq12d | ⊢ ( 𝑦  =  𝑣  →  ( ( 𝑢 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑦 ) )  ↔  ( 𝑢 𝑀 𝑣 )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) ) | 
						
							| 26 | 21 25 | rspc2v | ⊢ ( ( 𝑢  ∈  𝑋  ∧  𝑣  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) )  →  ( 𝑢 𝑀 𝑣 )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) ) | 
						
							| 27 | 17 26 | syl | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) )  →  ( 𝑢 𝑀 𝑣 )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) )  →  ( 𝑢 𝑀 𝑣 )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 29 | 28 | an32s | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( 𝑢 𝑀 𝑣 )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 30 | 29 | adantlrl | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( 𝑢 𝑀 𝑣 )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 31 | 30 | adantlll | ⊢ ( ( ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐴  ⊆  𝑋 )  ∧  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( 𝑢 𝑀 𝑣 )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 32 | 2 | oveqi | ⊢ ( 𝑢 𝑆 𝑣 )  =  ( 𝑢 ( 𝑀  ↾  ( 𝐴  ×  𝐴 ) ) 𝑣 ) | 
						
							| 33 |  | ovres | ⊢ ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( 𝑢 ( 𝑀  ↾  ( 𝐴  ×  𝐴 ) ) 𝑣 )  =  ( 𝑢 𝑀 𝑣 ) ) | 
						
							| 34 | 32 33 | eqtrid | ⊢ ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( 𝑢 𝑆 𝑣 )  =  ( 𝑢 𝑀 𝑣 ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐴  ⊆  𝑋 )  ∧  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( 𝑢 𝑆 𝑣 )  =  ( 𝑢 𝑀 𝑣 ) ) | 
						
							| 36 |  | fvres | ⊢ ( 𝑢  ∈  𝐴  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 37 | 36 | ad2antrl | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 38 |  | fvres | ⊢ ( 𝑣  ∈  𝐴  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑣 )  =  ( 𝐹 ‘ 𝑣 ) ) | 
						
							| 39 | 38 | ad2antll | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑣 )  =  ( 𝐹 ‘ 𝑣 ) ) | 
						
							| 40 | 37 39 | oveq12d | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹  ↾  𝐴 ) ‘ 𝑣 ) )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑇 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 41 | 3 | oveqi | ⊢ ( ( 𝐹 ‘ 𝑢 ) 𝑇 ( 𝐹 ‘ 𝑣 ) )  =  ( ( 𝐹 ‘ 𝑢 ) ( 𝑁  ↾  ( 𝐵  ×  𝐵 ) ) ( 𝐹 ‘ 𝑣 ) ) | 
						
							| 42 |  | f1ofun | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  Fun  𝐹 ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  Fun  𝐹 ) | 
						
							| 44 |  | f1odm | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  dom  𝐹  =  𝑋 ) | 
						
							| 45 | 44 | sseq2d | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  ( 𝐴  ⊆  dom  𝐹  ↔  𝐴  ⊆  𝑋 ) ) | 
						
							| 46 | 45 | biimparc | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  𝐴  ⊆  dom  𝐹 ) | 
						
							| 47 |  | funfvima2 | ⊢ ( ( Fun  𝐹  ∧  𝐴  ⊆  dom  𝐹 )  →  ( 𝑢  ∈  𝐴  →  ( 𝐹 ‘ 𝑢 )  ∈  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 48 | 43 46 47 | syl2anc | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑢  ∈  𝐴  →  ( 𝐹 ‘ 𝑢 )  ∈  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 49 | 48 | imp | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑢  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑢 )  ∈  ( 𝐹  “  𝐴 ) ) | 
						
							| 50 | 49 1 | eleqtrrdi | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑢  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑢 )  ∈  𝐵 ) | 
						
							| 51 | 50 | adantrr | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( 𝐹 ‘ 𝑢 )  ∈  𝐵 ) | 
						
							| 52 |  | funfvima2 | ⊢ ( ( Fun  𝐹  ∧  𝐴  ⊆  dom  𝐹 )  →  ( 𝑣  ∈  𝐴  →  ( 𝐹 ‘ 𝑣 )  ∈  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 53 | 43 46 52 | syl2anc | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑣  ∈  𝐴  →  ( 𝐹 ‘ 𝑣 )  ∈  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 54 | 53 | imp | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑣  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑣 )  ∈  ( 𝐹  “  𝐴 ) ) | 
						
							| 55 | 54 1 | eleqtrrdi | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑣  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑣 )  ∈  𝐵 ) | 
						
							| 56 | 55 | adantrl | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( 𝐹 ‘ 𝑣 )  ∈  𝐵 ) | 
						
							| 57 | 51 56 | ovresd | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( ( 𝐹 ‘ 𝑢 ) ( 𝑁  ↾  ( 𝐵  ×  𝐵 ) ) ( 𝐹 ‘ 𝑣 ) )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 58 | 41 57 | eqtrid | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( ( 𝐹 ‘ 𝑢 ) 𝑇 ( 𝐹 ‘ 𝑣 ) )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 59 | 40 58 | eqtrd | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹  ↾  𝐴 ) ‘ 𝑣 ) )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 60 | 59 | adantlrr | ⊢ ( ( ( 𝐴  ⊆  𝑋  ∧  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹  ↾  𝐴 ) ‘ 𝑣 ) )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 61 | 60 | adantlll | ⊢ ( ( ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐴  ⊆  𝑋 )  ∧  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹  ↾  𝐴 ) ‘ 𝑣 ) )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑁 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 62 | 31 35 61 | 3eqtr4d | ⊢ ( ( ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐴  ⊆  𝑋 )  ∧  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) )  →  ( 𝑢 𝑆 𝑣 )  =  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹  ↾  𝐴 ) ‘ 𝑣 ) ) ) | 
						
							| 63 | 62 | ralrimivva | ⊢ ( ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐴  ⊆  𝑋 )  ∧  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) )  →  ∀ 𝑢  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( 𝑢 𝑆 𝑣 )  =  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹  ↾  𝐴 ) ‘ 𝑣 ) ) ) | 
						
							| 64 | 63 | adantlrl | ⊢ ( ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  ∧  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑀 𝑦 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) )  →  ∀ 𝑢  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( 𝑢 𝑆 𝑣 )  =  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹  ↾  𝐴 ) ‘ 𝑣 ) ) ) | 
						
							| 65 | 13 64 | mpdan | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  ∀ 𝑢  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( 𝑢 𝑆 𝑣 )  =  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹  ↾  𝐴 ) ‘ 𝑣 ) ) ) | 
						
							| 66 |  | xmetres2 | ⊢ ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝑀  ↾  ( 𝐴  ×  𝐴 ) )  ∈  ( ∞Met ‘ 𝐴 ) ) | 
						
							| 67 | 2 66 | eqeltrid | ⊢ ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  𝑆  ∈  ( ∞Met ‘ 𝐴 ) ) | 
						
							| 68 | 67 | ad2ant2rl | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  𝑆  ∈  ( ∞Met ‘ 𝐴 ) ) | 
						
							| 69 |  | simplr | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  𝑁  ∈  ( ∞Met ‘ 𝑌 ) ) | 
						
							| 70 |  | imassrn | ⊢ ( 𝐹  “  𝐴 )  ⊆  ran  𝐹 | 
						
							| 71 | 1 70 | eqsstri | ⊢ 𝐵  ⊆  ran  𝐹 | 
						
							| 72 |  | f1ofo | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  𝐹 : 𝑋 –onto→ 𝑌 ) | 
						
							| 73 |  | forn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌  →  ran  𝐹  =  𝑌 ) | 
						
							| 74 | 6 72 73 | 3syl | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  ran  𝐹  =  𝑌 ) | 
						
							| 75 | 71 74 | sseqtrid | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  𝐵  ⊆  𝑌 ) | 
						
							| 76 |  | xmetres2 | ⊢ ( ( 𝑁  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝐵  ⊆  𝑌 )  →  ( 𝑁  ↾  ( 𝐵  ×  𝐵 ) )  ∈  ( ∞Met ‘ 𝐵 ) ) | 
						
							| 77 | 69 75 76 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  ( 𝑁  ↾  ( 𝐵  ×  𝐵 ) )  ∈  ( ∞Met ‘ 𝐵 ) ) | 
						
							| 78 | 3 77 | eqeltrid | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  𝑇  ∈  ( ∞Met ‘ 𝐵 ) ) | 
						
							| 79 | 1 | fveq2i | ⊢ ( ∞Met ‘ 𝐵 )  =  ( ∞Met ‘ ( 𝐹  “  𝐴 ) ) | 
						
							| 80 | 78 79 | eleqtrdi | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  𝑇  ∈  ( ∞Met ‘ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 81 |  | isismty | ⊢ ( ( 𝑆  ∈  ( ∞Met ‘ 𝐴 )  ∧  𝑇  ∈  ( ∞Met ‘ ( 𝐹  “  𝐴 ) ) )  →  ( ( 𝐹  ↾  𝐴 )  ∈  ( 𝑆  Ismty  𝑇 )  ↔  ( ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  ∀ 𝑢  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( 𝑢 𝑆 𝑣 )  =  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹  ↾  𝐴 ) ‘ 𝑣 ) ) ) ) ) | 
						
							| 82 | 68 80 81 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  ( ( 𝐹  ↾  𝐴 )  ∈  ( 𝑆  Ismty  𝑇 )  ↔  ( ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  ∀ 𝑢  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( 𝑢 𝑆 𝑣 )  =  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑢 ) 𝑇 ( ( 𝐹  ↾  𝐴 ) ‘ 𝑣 ) ) ) ) ) | 
						
							| 83 | 11 65 82 | mpbir2and | ⊢ ( ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑁  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( 𝑀  Ismty  𝑁 )  ∧  𝐴  ⊆  𝑋 ) )  →  ( 𝐹  ↾  𝐴 )  ∈  ( 𝑆  Ismty  𝑇 ) ) |