Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 22-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrnheibor.1 | |
|
rrnheibor.2 | |
||
rrnheibor.3 | |
||
rrnheibor.4 | |
||
Assertion | rrnheibor | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrnheibor.1 | |
|
2 | rrnheibor.2 | |
|
3 | rrnheibor.3 | |
|
4 | rrnheibor.4 | |
|
5 | 1 | rrnmet | |
6 | metres2 | |
|
7 | 2 6 | eqeltrid | |
8 | 5 7 | sylan | |
9 | 8 | biantrurd | |
10 | 3 | heibor | |
11 | 9 10 | bitrdi | |
12 | 2 | eleq1i | |
13 | 1 | rrncms | |
14 | 13 | adantr | |
15 | 4 | cmetss | |
16 | 14 15 | syl | |
17 | 12 16 | bitrid | |
18 | 1 2 | rrntotbnd | |
19 | 18 | adantr | |
20 | 17 19 | anbi12d | |
21 | 11 20 | bitrd | |