Metamath Proof Explorer


Theorem rrnheibor

Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses rrnheibor.1 X=I
rrnheibor.2 M=nIY×Y
rrnheibor.3 T=MetOpenM
rrnheibor.4 U=MetOpennI
Assertion rrnheibor IFinYXTCompYClsdUMBndY

Proof

Step Hyp Ref Expression
1 rrnheibor.1 X=I
2 rrnheibor.2 M=nIY×Y
3 rrnheibor.3 T=MetOpenM
4 rrnheibor.4 U=MetOpennI
5 1 rrnmet IFinnIMetX
6 metres2 nIMetXYXnIY×YMetY
7 2 6 eqeltrid nIMetXYXMMetY
8 5 7 sylan IFinYXMMetY
9 8 biantrurd IFinYXTCompMMetYTComp
10 3 heibor MMetYTCompMCMetYMTotBndY
11 9 10 bitrdi IFinYXTCompMCMetYMTotBndY
12 2 eleq1i MCMetYnIY×YCMetY
13 1 rrncms IFinnICMetX
14 13 adantr IFinYXnICMetX
15 4 cmetss nICMetXnIY×YCMetYYClsdU
16 14 15 syl IFinYXnIY×YCMetYYClsdU
17 12 16 bitrid IFinYXMCMetYYClsdU
18 1 2 rrntotbnd IFinMTotBndYMBndY
19 18 adantr IFinYXMTotBndYMBndY
20 17 19 anbi12d IFinYXMCMetYMTotBndYYClsdUMBndY
21 11 20 bitrd IFinYXTCompYClsdUMBndY