Metamath Proof Explorer


Theorem rrncms

Description: Euclidean space is complete. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypothesis rrncms.1 X=I
Assertion rrncms IFinnICMetX

Proof

Step Hyp Ref Expression
1 rrncms.1 X=I
2 eqid abs2=abs2
3 eqid MetOpennI=MetOpennI
4 simpll IFinfCaunIf:XIFin
5 simplr IFinfCaunIf:XfCaunI
6 simpr IFinfCaunIf:Xf:X
7 eqid mItftm=mItftm
8 1 2 3 4 5 6 7 rrncmslem IFinfCaunIf:XfdomtMetOpennI
9 8 ex IFinfCaunIf:XfdomtMetOpennI
10 9 ralrimiva IFinfCaunIf:XfdomtMetOpennI
11 nnuz =1
12 1zzd IFin1
13 1 rrnmet IFinnIMetX
14 11 3 12 13 iscmet3 IFinnICMetXfCaunIf:XfdomtMetOpennI
15 10 14 mpbird IFinnICMetX