Metamath Proof Explorer


Theorem reheibor

Description: Heine-Borel theorem for real numbers. A subset of RR is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses reheibor.2
|- M = ( ( abs o. - ) |` ( Y X. Y ) )
reheibor.3
|- T = ( MetOpen ` M )
reheibor.4
|- U = ( topGen ` ran (,) )
Assertion reheibor
|- ( Y C_ RR -> ( T e. Comp <-> ( Y e. ( Clsd ` U ) /\ M e. ( Bnd ` Y ) ) ) )

Proof

Step Hyp Ref Expression
1 reheibor.2
 |-  M = ( ( abs o. - ) |` ( Y X. Y ) )
2 reheibor.3
 |-  T = ( MetOpen ` M )
3 reheibor.4
 |-  U = ( topGen ` ran (,) )
4 df1o2
 |-  1o = { (/) }
5 snfi
 |-  { (/) } e. Fin
6 4 5 eqeltri
 |-  1o e. Fin
7 imassrn
 |-  ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) C_ ran ( x e. RR |-> ( { (/) } X. { x } ) )
8 0ex
 |-  (/) e. _V
9 eqid
 |-  ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) )
10 eqid
 |-  ( x e. RR |-> ( { (/) } X. { x } ) ) = ( x e. RR |-> ( { (/) } X. { x } ) )
11 9 10 ismrer1
 |-  ( (/) e. _V -> ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` { (/) } ) ) )
12 8 11 ax-mp
 |-  ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` { (/) } ) )
13 4 fveq2i
 |-  ( Rn ` 1o ) = ( Rn ` { (/) } )
14 13 oveq2i
 |-  ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` { (/) } ) )
15 12 14 eleqtrri
 |-  ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) )
16 9 rexmet
 |-  ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR )
17 eqid
 |-  ( RR ^m 1o ) = ( RR ^m 1o )
18 17 rrnmet
 |-  ( 1o e. Fin -> ( Rn ` 1o ) e. ( Met ` ( RR ^m 1o ) ) )
19 metxmet
 |-  ( ( Rn ` 1o ) e. ( Met ` ( RR ^m 1o ) ) -> ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) )
20 6 18 19 mp2b
 |-  ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) )
21 isismty
 |-  ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) ) -> ( ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) <-> ( ( x e. RR |-> ( { (/) } X. { x } ) ) : RR -1-1-onto-> ( RR ^m 1o ) /\ A. y e. RR A. z e. RR ( y ( ( abs o. - ) |` ( RR X. RR ) ) z ) = ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) ` y ) ( Rn ` 1o ) ( ( x e. RR |-> ( { (/) } X. { x } ) ) ` z ) ) ) ) )
22 16 20 21 mp2an
 |-  ( ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) <-> ( ( x e. RR |-> ( { (/) } X. { x } ) ) : RR -1-1-onto-> ( RR ^m 1o ) /\ A. y e. RR A. z e. RR ( y ( ( abs o. - ) |` ( RR X. RR ) ) z ) = ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) ` y ) ( Rn ` 1o ) ( ( x e. RR |-> ( { (/) } X. { x } ) ) ` z ) ) ) )
23 15 22 mpbi
 |-  ( ( x e. RR |-> ( { (/) } X. { x } ) ) : RR -1-1-onto-> ( RR ^m 1o ) /\ A. y e. RR A. z e. RR ( y ( ( abs o. - ) |` ( RR X. RR ) ) z ) = ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) ` y ) ( Rn ` 1o ) ( ( x e. RR |-> ( { (/) } X. { x } ) ) ` z ) ) )
24 23 simpli
 |-  ( x e. RR |-> ( { (/) } X. { x } ) ) : RR -1-1-onto-> ( RR ^m 1o )
25 f1of
 |-  ( ( x e. RR |-> ( { (/) } X. { x } ) ) : RR -1-1-onto-> ( RR ^m 1o ) -> ( x e. RR |-> ( { (/) } X. { x } ) ) : RR --> ( RR ^m 1o ) )
26 frn
 |-  ( ( x e. RR |-> ( { (/) } X. { x } ) ) : RR --> ( RR ^m 1o ) -> ran ( x e. RR |-> ( { (/) } X. { x } ) ) C_ ( RR ^m 1o ) )
27 24 25 26 mp2b
 |-  ran ( x e. RR |-> ( { (/) } X. { x } ) ) C_ ( RR ^m 1o )
28 7 27 sstri
 |-  ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) C_ ( RR ^m 1o )
29 28 a1i
 |-  ( Y C_ RR -> ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) C_ ( RR ^m 1o ) )
30 eqid
 |-  ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) = ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) )
31 eqid
 |-  ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) = ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) )
32 eqid
 |-  ( MetOpen ` ( Rn ` 1o ) ) = ( MetOpen ` ( Rn ` 1o ) )
33 17 30 31 32 rrnheibor
 |-  ( ( 1o e. Fin /\ ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) C_ ( RR ^m 1o ) ) -> ( ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp <-> ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) e. ( Clsd ` ( MetOpen ` ( Rn ` 1o ) ) ) /\ ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( Bnd ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) )
34 6 29 33 sylancr
 |-  ( Y C_ RR -> ( ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp <-> ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) e. ( Clsd ` ( MetOpen ` ( Rn ` 1o ) ) ) /\ ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( Bnd ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) )
35 cnxmet
 |-  ( abs o. - ) e. ( *Met ` CC )
36 id
 |-  ( Y C_ RR -> Y C_ RR )
37 ax-resscn
 |-  RR C_ CC
38 36 37 sstrdi
 |-  ( Y C_ RR -> Y C_ CC )
39 xmetres2
 |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ Y C_ CC ) -> ( ( abs o. - ) |` ( Y X. Y ) ) e. ( *Met ` Y ) )
40 35 38 39 sylancr
 |-  ( Y C_ RR -> ( ( abs o. - ) |` ( Y X. Y ) ) e. ( *Met ` Y ) )
41 1 40 eqeltrid
 |-  ( Y C_ RR -> M e. ( *Met ` Y ) )
42 xmetres2
 |-  ( ( ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) /\ ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) C_ ( RR ^m 1o ) ) -> ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( *Met ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) )
43 20 29 42 sylancr
 |-  ( Y C_ RR -> ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( *Met ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) )
44 2 31 ismtyhmeo
 |-  ( ( M e. ( *Met ` Y ) /\ ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( *Met ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) -> ( M Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) C_ ( T Homeo ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) )
45 41 43 44 syl2anc
 |-  ( Y C_ RR -> ( M Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) C_ ( T Homeo ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) )
46 16 a1i
 |-  ( Y C_ RR -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) )
47 20 a1i
 |-  ( Y C_ RR -> ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) )
48 15 a1i
 |-  ( Y C_ RR -> ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) )
49 eqid
 |-  ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) = ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y )
50 eqid
 |-  ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) )
51 49 50 30 ismtyres
 |-  ( ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) ) /\ ( ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) /\ Y C_ RR ) ) -> ( ( x e. RR |-> ( { (/) } X. { x } ) ) |` Y ) e. ( ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) )
52 46 47 48 36 51 syl22anc
 |-  ( Y C_ RR -> ( ( x e. RR |-> ( { (/) } X. { x } ) ) |` Y ) e. ( ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) )
53 xpss12
 |-  ( ( Y C_ RR /\ Y C_ RR ) -> ( Y X. Y ) C_ ( RR X. RR ) )
54 53 anidms
 |-  ( Y C_ RR -> ( Y X. Y ) C_ ( RR X. RR ) )
55 54 resabs1d
 |-  ( Y C_ RR -> ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) = ( ( abs o. - ) |` ( Y X. Y ) ) )
56 55 1 eqtr4di
 |-  ( Y C_ RR -> ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) = M )
57 56 oveq1d
 |-  ( Y C_ RR -> ( ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) = ( M Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) )
58 52 57 eleqtrd
 |-  ( Y C_ RR -> ( ( x e. RR |-> ( { (/) } X. { x } ) ) |` Y ) e. ( M Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) )
59 45 58 sseldd
 |-  ( Y C_ RR -> ( ( x e. RR |-> ( { (/) } X. { x } ) ) |` Y ) e. ( T Homeo ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) )
60 hmphi
 |-  ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) |` Y ) e. ( T Homeo ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) -> T ~= ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) )
61 59 60 syl
 |-  ( Y C_ RR -> T ~= ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) )
62 cmphmph
 |-  ( T ~= ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) -> ( T e. Comp -> ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp ) )
63 hmphsym
 |-  ( T ~= ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) -> ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ~= T )
64 cmphmph
 |-  ( ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ~= T -> ( ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp -> T e. Comp ) )
65 63 64 syl
 |-  ( T ~= ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) -> ( ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp -> T e. Comp ) )
66 62 65 impbid
 |-  ( T ~= ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) -> ( T e. Comp <-> ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp ) )
67 61 66 syl
 |-  ( Y C_ RR -> ( T e. Comp <-> ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp ) )
68 eqid
 |-  ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) )
69 9 68 tgioo
 |-  ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) )
70 3 69 eqtri
 |-  U = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) )
71 70 32 ismtyhmeo
 |-  ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) ) -> ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) C_ ( U Homeo ( MetOpen ` ( Rn ` 1o ) ) ) )
72 16 20 71 mp2an
 |-  ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) C_ ( U Homeo ( MetOpen ` ( Rn ` 1o ) ) )
73 72 15 sselii
 |-  ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( U Homeo ( MetOpen ` ( Rn ` 1o ) ) )
74 retopon
 |-  ( topGen ` ran (,) ) e. ( TopOn ` RR )
75 3 74 eqeltri
 |-  U e. ( TopOn ` RR )
76 75 toponunii
 |-  RR = U. U
77 76 hmeocld
 |-  ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( U Homeo ( MetOpen ` ( Rn ` 1o ) ) ) /\ Y C_ RR ) -> ( Y e. ( Clsd ` U ) <-> ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) e. ( Clsd ` ( MetOpen ` ( Rn ` 1o ) ) ) ) )
78 73 36 77 sylancr
 |-  ( Y C_ RR -> ( Y e. ( Clsd ` U ) <-> ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) e. ( Clsd ` ( MetOpen ` ( Rn ` 1o ) ) ) ) )
79 ismtybnd
 |-  ( ( M e. ( *Met ` Y ) /\ ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( *Met ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) /\ ( ( x e. RR |-> ( { (/) } X. { x } ) ) |` Y ) e. ( M Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) -> ( M e. ( Bnd ` Y ) <-> ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( Bnd ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) )
80 41 43 58 79 syl3anc
 |-  ( Y C_ RR -> ( M e. ( Bnd ` Y ) <-> ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( Bnd ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) )
81 78 80 anbi12d
 |-  ( Y C_ RR -> ( ( Y e. ( Clsd ` U ) /\ M e. ( Bnd ` Y ) ) <-> ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) e. ( Clsd ` ( MetOpen ` ( Rn ` 1o ) ) ) /\ ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( Bnd ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) )
82 34 67 81 3bitr4d
 |-  ( Y C_ RR -> ( T e. Comp <-> ( Y e. ( Clsd ` U ) /\ M e. ( Bnd ` Y ) ) ) )