Step |
Hyp |
Ref |
Expression |
1 |
|
reheibor.2 |
|- M = ( ( abs o. - ) |` ( Y X. Y ) ) |
2 |
|
reheibor.3 |
|- T = ( MetOpen ` M ) |
3 |
|
reheibor.4 |
|- U = ( topGen ` ran (,) ) |
4 |
|
df1o2 |
|- 1o = { (/) } |
5 |
|
snfi |
|- { (/) } e. Fin |
6 |
4 5
|
eqeltri |
|- 1o e. Fin |
7 |
|
imassrn |
|- ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) C_ ran ( x e. RR |-> ( { (/) } X. { x } ) ) |
8 |
|
0ex |
|- (/) e. _V |
9 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
10 |
|
eqid |
|- ( x e. RR |-> ( { (/) } X. { x } ) ) = ( x e. RR |-> ( { (/) } X. { x } ) ) |
11 |
9 10
|
ismrer1 |
|- ( (/) e. _V -> ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` { (/) } ) ) ) |
12 |
8 11
|
ax-mp |
|- ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` { (/) } ) ) |
13 |
4
|
fveq2i |
|- ( Rn ` 1o ) = ( Rn ` { (/) } ) |
14 |
13
|
oveq2i |
|- ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` { (/) } ) ) |
15 |
12 14
|
eleqtrri |
|- ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) |
16 |
9
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
17 |
|
eqid |
|- ( RR ^m 1o ) = ( RR ^m 1o ) |
18 |
17
|
rrnmet |
|- ( 1o e. Fin -> ( Rn ` 1o ) e. ( Met ` ( RR ^m 1o ) ) ) |
19 |
|
metxmet |
|- ( ( Rn ` 1o ) e. ( Met ` ( RR ^m 1o ) ) -> ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) ) |
20 |
6 18 19
|
mp2b |
|- ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) |
21 |
|
isismty |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) ) -> ( ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) <-> ( ( x e. RR |-> ( { (/) } X. { x } ) ) : RR -1-1-onto-> ( RR ^m 1o ) /\ A. y e. RR A. z e. RR ( y ( ( abs o. - ) |` ( RR X. RR ) ) z ) = ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) ` y ) ( Rn ` 1o ) ( ( x e. RR |-> ( { (/) } X. { x } ) ) ` z ) ) ) ) ) |
22 |
16 20 21
|
mp2an |
|- ( ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) <-> ( ( x e. RR |-> ( { (/) } X. { x } ) ) : RR -1-1-onto-> ( RR ^m 1o ) /\ A. y e. RR A. z e. RR ( y ( ( abs o. - ) |` ( RR X. RR ) ) z ) = ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) ` y ) ( Rn ` 1o ) ( ( x e. RR |-> ( { (/) } X. { x } ) ) ` z ) ) ) ) |
23 |
15 22
|
mpbi |
|- ( ( x e. RR |-> ( { (/) } X. { x } ) ) : RR -1-1-onto-> ( RR ^m 1o ) /\ A. y e. RR A. z e. RR ( y ( ( abs o. - ) |` ( RR X. RR ) ) z ) = ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) ` y ) ( Rn ` 1o ) ( ( x e. RR |-> ( { (/) } X. { x } ) ) ` z ) ) ) |
24 |
23
|
simpli |
|- ( x e. RR |-> ( { (/) } X. { x } ) ) : RR -1-1-onto-> ( RR ^m 1o ) |
25 |
|
f1of |
|- ( ( x e. RR |-> ( { (/) } X. { x } ) ) : RR -1-1-onto-> ( RR ^m 1o ) -> ( x e. RR |-> ( { (/) } X. { x } ) ) : RR --> ( RR ^m 1o ) ) |
26 |
|
frn |
|- ( ( x e. RR |-> ( { (/) } X. { x } ) ) : RR --> ( RR ^m 1o ) -> ran ( x e. RR |-> ( { (/) } X. { x } ) ) C_ ( RR ^m 1o ) ) |
27 |
24 25 26
|
mp2b |
|- ran ( x e. RR |-> ( { (/) } X. { x } ) ) C_ ( RR ^m 1o ) |
28 |
7 27
|
sstri |
|- ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) C_ ( RR ^m 1o ) |
29 |
28
|
a1i |
|- ( Y C_ RR -> ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) C_ ( RR ^m 1o ) ) |
30 |
|
eqid |
|- ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) = ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) |
31 |
|
eqid |
|- ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) = ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) |
32 |
|
eqid |
|- ( MetOpen ` ( Rn ` 1o ) ) = ( MetOpen ` ( Rn ` 1o ) ) |
33 |
17 30 31 32
|
rrnheibor |
|- ( ( 1o e. Fin /\ ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) C_ ( RR ^m 1o ) ) -> ( ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp <-> ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) e. ( Clsd ` ( MetOpen ` ( Rn ` 1o ) ) ) /\ ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( Bnd ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) |
34 |
6 29 33
|
sylancr |
|- ( Y C_ RR -> ( ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp <-> ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) e. ( Clsd ` ( MetOpen ` ( Rn ` 1o ) ) ) /\ ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( Bnd ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) |
35 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
36 |
|
id |
|- ( Y C_ RR -> Y C_ RR ) |
37 |
|
ax-resscn |
|- RR C_ CC |
38 |
36 37
|
sstrdi |
|- ( Y C_ RR -> Y C_ CC ) |
39 |
|
xmetres2 |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ Y C_ CC ) -> ( ( abs o. - ) |` ( Y X. Y ) ) e. ( *Met ` Y ) ) |
40 |
35 38 39
|
sylancr |
|- ( Y C_ RR -> ( ( abs o. - ) |` ( Y X. Y ) ) e. ( *Met ` Y ) ) |
41 |
1 40
|
eqeltrid |
|- ( Y C_ RR -> M e. ( *Met ` Y ) ) |
42 |
|
xmetres2 |
|- ( ( ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) /\ ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) C_ ( RR ^m 1o ) ) -> ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( *Met ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) |
43 |
20 29 42
|
sylancr |
|- ( Y C_ RR -> ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( *Met ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) |
44 |
2 31
|
ismtyhmeo |
|- ( ( M e. ( *Met ` Y ) /\ ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( *Met ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) -> ( M Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) C_ ( T Homeo ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) ) |
45 |
41 43 44
|
syl2anc |
|- ( Y C_ RR -> ( M Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) C_ ( T Homeo ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) ) |
46 |
16
|
a1i |
|- ( Y C_ RR -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) ) |
47 |
20
|
a1i |
|- ( Y C_ RR -> ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) ) |
48 |
15
|
a1i |
|- ( Y C_ RR -> ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) ) |
49 |
|
eqid |
|- ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) = ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) |
50 |
|
eqid |
|- ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) |
51 |
49 50 30
|
ismtyres |
|- ( ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) ) /\ ( ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) /\ Y C_ RR ) ) -> ( ( x e. RR |-> ( { (/) } X. { x } ) ) |` Y ) e. ( ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) |
52 |
46 47 48 36 51
|
syl22anc |
|- ( Y C_ RR -> ( ( x e. RR |-> ( { (/) } X. { x } ) ) |` Y ) e. ( ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) |
53 |
|
xpss12 |
|- ( ( Y C_ RR /\ Y C_ RR ) -> ( Y X. Y ) C_ ( RR X. RR ) ) |
54 |
53
|
anidms |
|- ( Y C_ RR -> ( Y X. Y ) C_ ( RR X. RR ) ) |
55 |
54
|
resabs1d |
|- ( Y C_ RR -> ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) = ( ( abs o. - ) |` ( Y X. Y ) ) ) |
56 |
55 1
|
eqtr4di |
|- ( Y C_ RR -> ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) = M ) |
57 |
56
|
oveq1d |
|- ( Y C_ RR -> ( ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( Y X. Y ) ) Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) = ( M Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) |
58 |
52 57
|
eleqtrd |
|- ( Y C_ RR -> ( ( x e. RR |-> ( { (/) } X. { x } ) ) |` Y ) e. ( M Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) |
59 |
45 58
|
sseldd |
|- ( Y C_ RR -> ( ( x e. RR |-> ( { (/) } X. { x } ) ) |` Y ) e. ( T Homeo ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) ) |
60 |
|
hmphi |
|- ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) |` Y ) e. ( T Homeo ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) -> T ~= ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) |
61 |
59 60
|
syl |
|- ( Y C_ RR -> T ~= ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) |
62 |
|
cmphmph |
|- ( T ~= ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) -> ( T e. Comp -> ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp ) ) |
63 |
|
hmphsym |
|- ( T ~= ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) -> ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ~= T ) |
64 |
|
cmphmph |
|- ( ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ~= T -> ( ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp -> T e. Comp ) ) |
65 |
63 64
|
syl |
|- ( T ~= ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) -> ( ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp -> T e. Comp ) ) |
66 |
62 65
|
impbid |
|- ( T ~= ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) -> ( T e. Comp <-> ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp ) ) |
67 |
61 66
|
syl |
|- ( Y C_ RR -> ( T e. Comp <-> ( MetOpen ` ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) e. Comp ) ) |
68 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
69 |
9 68
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
70 |
3 69
|
eqtri |
|- U = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
71 |
70 32
|
ismtyhmeo |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( Rn ` 1o ) e. ( *Met ` ( RR ^m 1o ) ) ) -> ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) C_ ( U Homeo ( MetOpen ` ( Rn ` 1o ) ) ) ) |
72 |
16 20 71
|
mp2an |
|- ( ( ( abs o. - ) |` ( RR X. RR ) ) Ismty ( Rn ` 1o ) ) C_ ( U Homeo ( MetOpen ` ( Rn ` 1o ) ) ) |
73 |
72 15
|
sselii |
|- ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( U Homeo ( MetOpen ` ( Rn ` 1o ) ) ) |
74 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
75 |
3 74
|
eqeltri |
|- U e. ( TopOn ` RR ) |
76 |
75
|
toponunii |
|- RR = U. U |
77 |
76
|
hmeocld |
|- ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) e. ( U Homeo ( MetOpen ` ( Rn ` 1o ) ) ) /\ Y C_ RR ) -> ( Y e. ( Clsd ` U ) <-> ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) e. ( Clsd ` ( MetOpen ` ( Rn ` 1o ) ) ) ) ) |
78 |
73 36 77
|
sylancr |
|- ( Y C_ RR -> ( Y e. ( Clsd ` U ) <-> ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) e. ( Clsd ` ( MetOpen ` ( Rn ` 1o ) ) ) ) ) |
79 |
|
ismtybnd |
|- ( ( M e. ( *Met ` Y ) /\ ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( *Met ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) /\ ( ( x e. RR |-> ( { (/) } X. { x } ) ) |` Y ) e. ( M Ismty ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) -> ( M e. ( Bnd ` Y ) <-> ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( Bnd ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) |
80 |
41 43 58 79
|
syl3anc |
|- ( Y C_ RR -> ( M e. ( Bnd ` Y ) <-> ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( Bnd ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) |
81 |
78 80
|
anbi12d |
|- ( Y C_ RR -> ( ( Y e. ( Clsd ` U ) /\ M e. ( Bnd ` Y ) ) <-> ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) e. ( Clsd ` ( MetOpen ` ( Rn ` 1o ) ) ) /\ ( ( Rn ` 1o ) |` ( ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) X. ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) e. ( Bnd ` ( ( x e. RR |-> ( { (/) } X. { x } ) ) " Y ) ) ) ) ) |
82 |
34 67 81
|
3bitr4d |
|- ( Y C_ RR -> ( T e. Comp <-> ( Y e. ( Clsd ` U ) /\ M e. ( Bnd ` Y ) ) ) ) |