| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismrer1.1 |
|- R = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 2 |
|
ismrer1.2 |
|- F = ( x e. RR |-> ( { A } X. { x } ) ) |
| 3 |
|
sneq |
|- ( y = A -> { y } = { A } ) |
| 4 |
3
|
xpeq1d |
|- ( y = A -> ( { y } X. { x } ) = ( { A } X. { x } ) ) |
| 5 |
4
|
mpteq2dv |
|- ( y = A -> ( x e. RR |-> ( { y } X. { x } ) ) = ( x e. RR |-> ( { A } X. { x } ) ) ) |
| 6 |
5 2
|
eqtr4di |
|- ( y = A -> ( x e. RR |-> ( { y } X. { x } ) ) = F ) |
| 7 |
6
|
f1oeq1d |
|- ( y = A -> ( ( x e. RR |-> ( { y } X. { x } ) ) : RR -1-1-onto-> ( RR ^m { y } ) <-> F : RR -1-1-onto-> ( RR ^m { y } ) ) ) |
| 8 |
3
|
oveq2d |
|- ( y = A -> ( RR ^m { y } ) = ( RR ^m { A } ) ) |
| 9 |
|
f1oeq3 |
|- ( ( RR ^m { y } ) = ( RR ^m { A } ) -> ( F : RR -1-1-onto-> ( RR ^m { y } ) <-> F : RR -1-1-onto-> ( RR ^m { A } ) ) ) |
| 10 |
8 9
|
syl |
|- ( y = A -> ( F : RR -1-1-onto-> ( RR ^m { y } ) <-> F : RR -1-1-onto-> ( RR ^m { A } ) ) ) |
| 11 |
7 10
|
bitrd |
|- ( y = A -> ( ( x e. RR |-> ( { y } X. { x } ) ) : RR -1-1-onto-> ( RR ^m { y } ) <-> F : RR -1-1-onto-> ( RR ^m { A } ) ) ) |
| 12 |
|
eqid |
|- { y } = { y } |
| 13 |
|
reex |
|- RR e. _V |
| 14 |
|
vex |
|- y e. _V |
| 15 |
|
eqid |
|- ( x e. RR |-> ( { y } X. { x } ) ) = ( x e. RR |-> ( { y } X. { x } ) ) |
| 16 |
12 13 14 15
|
mapsnf1o3 |
|- ( x e. RR |-> ( { y } X. { x } ) ) : RR -1-1-onto-> ( RR ^m { y } ) |
| 17 |
11 16
|
vtoclg |
|- ( A e. V -> F : RR -1-1-onto-> ( RR ^m { A } ) ) |
| 18 |
|
sneq |
|- ( x = y -> { x } = { y } ) |
| 19 |
18
|
xpeq2d |
|- ( x = y -> ( { A } X. { x } ) = ( { A } X. { y } ) ) |
| 20 |
|
snex |
|- { A } e. _V |
| 21 |
|
snex |
|- { x } e. _V |
| 22 |
20 21
|
xpex |
|- ( { A } X. { x } ) e. _V |
| 23 |
19 2 22
|
fvmpt3i |
|- ( y e. RR -> ( F ` y ) = ( { A } X. { y } ) ) |
| 24 |
23
|
fveq1d |
|- ( y e. RR -> ( ( F ` y ) ` A ) = ( ( { A } X. { y } ) ` A ) ) |
| 25 |
24
|
adantr |
|- ( ( y e. RR /\ z e. RR ) -> ( ( F ` y ) ` A ) = ( ( { A } X. { y } ) ` A ) ) |
| 26 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
| 27 |
|
fvconst2g |
|- ( ( y e. _V /\ A e. { A } ) -> ( ( { A } X. { y } ) ` A ) = y ) |
| 28 |
14 26 27
|
sylancr |
|- ( A e. V -> ( ( { A } X. { y } ) ` A ) = y ) |
| 29 |
25 28
|
sylan9eqr |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( ( F ` y ) ` A ) = y ) |
| 30 |
|
sneq |
|- ( x = z -> { x } = { z } ) |
| 31 |
30
|
xpeq2d |
|- ( x = z -> ( { A } X. { x } ) = ( { A } X. { z } ) ) |
| 32 |
31 2 22
|
fvmpt3i |
|- ( z e. RR -> ( F ` z ) = ( { A } X. { z } ) ) |
| 33 |
32
|
fveq1d |
|- ( z e. RR -> ( ( F ` z ) ` A ) = ( ( { A } X. { z } ) ` A ) ) |
| 34 |
33
|
adantl |
|- ( ( y e. RR /\ z e. RR ) -> ( ( F ` z ) ` A ) = ( ( { A } X. { z } ) ` A ) ) |
| 35 |
|
vex |
|- z e. _V |
| 36 |
|
fvconst2g |
|- ( ( z e. _V /\ A e. { A } ) -> ( ( { A } X. { z } ) ` A ) = z ) |
| 37 |
35 26 36
|
sylancr |
|- ( A e. V -> ( ( { A } X. { z } ) ` A ) = z ) |
| 38 |
34 37
|
sylan9eqr |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( ( F ` z ) ` A ) = z ) |
| 39 |
29 38
|
oveq12d |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( ( ( F ` y ) ` A ) - ( ( F ` z ) ` A ) ) = ( y - z ) ) |
| 40 |
39
|
oveq1d |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( ( ( ( F ` y ) ` A ) - ( ( F ` z ) ` A ) ) ^ 2 ) = ( ( y - z ) ^ 2 ) ) |
| 41 |
|
resubcl |
|- ( ( y e. RR /\ z e. RR ) -> ( y - z ) e. RR ) |
| 42 |
41
|
adantl |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( y - z ) e. RR ) |
| 43 |
|
absresq |
|- ( ( y - z ) e. RR -> ( ( abs ` ( y - z ) ) ^ 2 ) = ( ( y - z ) ^ 2 ) ) |
| 44 |
42 43
|
syl |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( ( abs ` ( y - z ) ) ^ 2 ) = ( ( y - z ) ^ 2 ) ) |
| 45 |
40 44
|
eqtr4d |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( ( ( ( F ` y ) ` A ) - ( ( F ` z ) ` A ) ) ^ 2 ) = ( ( abs ` ( y - z ) ) ^ 2 ) ) |
| 46 |
42
|
recnd |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( y - z ) e. CC ) |
| 47 |
46
|
abscld |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( abs ` ( y - z ) ) e. RR ) |
| 48 |
47
|
recnd |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( abs ` ( y - z ) ) e. CC ) |
| 49 |
48
|
sqcld |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( ( abs ` ( y - z ) ) ^ 2 ) e. CC ) |
| 50 |
45 49
|
eqeltrd |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( ( ( ( F ` y ) ` A ) - ( ( F ` z ) ` A ) ) ^ 2 ) e. CC ) |
| 51 |
|
fveq2 |
|- ( k = A -> ( ( F ` y ) ` k ) = ( ( F ` y ) ` A ) ) |
| 52 |
|
fveq2 |
|- ( k = A -> ( ( F ` z ) ` k ) = ( ( F ` z ) ` A ) ) |
| 53 |
51 52
|
oveq12d |
|- ( k = A -> ( ( ( F ` y ) ` k ) - ( ( F ` z ) ` k ) ) = ( ( ( F ` y ) ` A ) - ( ( F ` z ) ` A ) ) ) |
| 54 |
53
|
oveq1d |
|- ( k = A -> ( ( ( ( F ` y ) ` k ) - ( ( F ` z ) ` k ) ) ^ 2 ) = ( ( ( ( F ` y ) ` A ) - ( ( F ` z ) ` A ) ) ^ 2 ) ) |
| 55 |
54
|
sumsn |
|- ( ( A e. V /\ ( ( ( ( F ` y ) ` A ) - ( ( F ` z ) ` A ) ) ^ 2 ) e. CC ) -> sum_ k e. { A } ( ( ( ( F ` y ) ` k ) - ( ( F ` z ) ` k ) ) ^ 2 ) = ( ( ( ( F ` y ) ` A ) - ( ( F ` z ) ` A ) ) ^ 2 ) ) |
| 56 |
50 55
|
syldan |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> sum_ k e. { A } ( ( ( ( F ` y ) ` k ) - ( ( F ` z ) ` k ) ) ^ 2 ) = ( ( ( ( F ` y ) ` A ) - ( ( F ` z ) ` A ) ) ^ 2 ) ) |
| 57 |
56 45
|
eqtrd |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> sum_ k e. { A } ( ( ( ( F ` y ) ` k ) - ( ( F ` z ) ` k ) ) ^ 2 ) = ( ( abs ` ( y - z ) ) ^ 2 ) ) |
| 58 |
57
|
fveq2d |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( sqrt ` sum_ k e. { A } ( ( ( ( F ` y ) ` k ) - ( ( F ` z ) ` k ) ) ^ 2 ) ) = ( sqrt ` ( ( abs ` ( y - z ) ) ^ 2 ) ) ) |
| 59 |
46
|
absge0d |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> 0 <_ ( abs ` ( y - z ) ) ) |
| 60 |
47 59
|
sqrtsqd |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( sqrt ` ( ( abs ` ( y - z ) ) ^ 2 ) ) = ( abs ` ( y - z ) ) ) |
| 61 |
58 60
|
eqtrd |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( sqrt ` sum_ k e. { A } ( ( ( ( F ` y ) ` k ) - ( ( F ` z ) ` k ) ) ^ 2 ) ) = ( abs ` ( y - z ) ) ) |
| 62 |
|
f1of |
|- ( F : RR -1-1-onto-> ( RR ^m { A } ) -> F : RR --> ( RR ^m { A } ) ) |
| 63 |
17 62
|
syl |
|- ( A e. V -> F : RR --> ( RR ^m { A } ) ) |
| 64 |
63
|
ffvelcdmda |
|- ( ( A e. V /\ y e. RR ) -> ( F ` y ) e. ( RR ^m { A } ) ) |
| 65 |
63
|
ffvelcdmda |
|- ( ( A e. V /\ z e. RR ) -> ( F ` z ) e. ( RR ^m { A } ) ) |
| 66 |
64 65
|
anim12dan |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( ( F ` y ) e. ( RR ^m { A } ) /\ ( F ` z ) e. ( RR ^m { A } ) ) ) |
| 67 |
|
snfi |
|- { A } e. Fin |
| 68 |
|
eqid |
|- ( RR ^m { A } ) = ( RR ^m { A } ) |
| 69 |
68
|
rrnmval |
|- ( ( { A } e. Fin /\ ( F ` y ) e. ( RR ^m { A } ) /\ ( F ` z ) e. ( RR ^m { A } ) ) -> ( ( F ` y ) ( Rn ` { A } ) ( F ` z ) ) = ( sqrt ` sum_ k e. { A } ( ( ( ( F ` y ) ` k ) - ( ( F ` z ) ` k ) ) ^ 2 ) ) ) |
| 70 |
67 69
|
mp3an1 |
|- ( ( ( F ` y ) e. ( RR ^m { A } ) /\ ( F ` z ) e. ( RR ^m { A } ) ) -> ( ( F ` y ) ( Rn ` { A } ) ( F ` z ) ) = ( sqrt ` sum_ k e. { A } ( ( ( ( F ` y ) ` k ) - ( ( F ` z ) ` k ) ) ^ 2 ) ) ) |
| 71 |
66 70
|
syl |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( ( F ` y ) ( Rn ` { A } ) ( F ` z ) ) = ( sqrt ` sum_ k e. { A } ( ( ( ( F ` y ) ` k ) - ( ( F ` z ) ` k ) ) ^ 2 ) ) ) |
| 72 |
1
|
remetdval |
|- ( ( y e. RR /\ z e. RR ) -> ( y R z ) = ( abs ` ( y - z ) ) ) |
| 73 |
72
|
adantl |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( y R z ) = ( abs ` ( y - z ) ) ) |
| 74 |
61 71 73
|
3eqtr4rd |
|- ( ( A e. V /\ ( y e. RR /\ z e. RR ) ) -> ( y R z ) = ( ( F ` y ) ( Rn ` { A } ) ( F ` z ) ) ) |
| 75 |
74
|
ralrimivva |
|- ( A e. V -> A. y e. RR A. z e. RR ( y R z ) = ( ( F ` y ) ( Rn ` { A } ) ( F ` z ) ) ) |
| 76 |
1
|
rexmet |
|- R e. ( *Met ` RR ) |
| 77 |
68
|
rrnmet |
|- ( { A } e. Fin -> ( Rn ` { A } ) e. ( Met ` ( RR ^m { A } ) ) ) |
| 78 |
|
metxmet |
|- ( ( Rn ` { A } ) e. ( Met ` ( RR ^m { A } ) ) -> ( Rn ` { A } ) e. ( *Met ` ( RR ^m { A } ) ) ) |
| 79 |
67 77 78
|
mp2b |
|- ( Rn ` { A } ) e. ( *Met ` ( RR ^m { A } ) ) |
| 80 |
|
isismty |
|- ( ( R e. ( *Met ` RR ) /\ ( Rn ` { A } ) e. ( *Met ` ( RR ^m { A } ) ) ) -> ( F e. ( R Ismty ( Rn ` { A } ) ) <-> ( F : RR -1-1-onto-> ( RR ^m { A } ) /\ A. y e. RR A. z e. RR ( y R z ) = ( ( F ` y ) ( Rn ` { A } ) ( F ` z ) ) ) ) ) |
| 81 |
76 79 80
|
mp2an |
|- ( F e. ( R Ismty ( Rn ` { A } ) ) <-> ( F : RR -1-1-onto-> ( RR ^m { A } ) /\ A. y e. RR A. z e. RR ( y R z ) = ( ( F ` y ) ( Rn ` { A } ) ( F ` z ) ) ) ) |
| 82 |
17 75 81
|
sylanbrc |
|- ( A e. V -> F e. ( R Ismty ( Rn ` { A } ) ) ) |