| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismrer1.1 |
⊢ 𝑅 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 2 |
|
ismrer1.2 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( { 𝐴 } × { 𝑥 } ) ) |
| 3 |
|
sneq |
⊢ ( 𝑦 = 𝐴 → { 𝑦 } = { 𝐴 } ) |
| 4 |
3
|
xpeq1d |
⊢ ( 𝑦 = 𝐴 → ( { 𝑦 } × { 𝑥 } ) = ( { 𝐴 } × { 𝑥 } ) ) |
| 5 |
4
|
mpteq2dv |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ ℝ ↦ ( { 𝑦 } × { 𝑥 } ) ) = ( 𝑥 ∈ ℝ ↦ ( { 𝐴 } × { 𝑥 } ) ) ) |
| 6 |
5 2
|
eqtr4di |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ ℝ ↦ ( { 𝑦 } × { 𝑥 } ) ) = 𝐹 ) |
| 7 |
6
|
f1oeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ∈ ℝ ↦ ( { 𝑦 } × { 𝑥 } ) ) : ℝ –1-1-onto→ ( ℝ ↑m { 𝑦 } ) ↔ 𝐹 : ℝ –1-1-onto→ ( ℝ ↑m { 𝑦 } ) ) ) |
| 8 |
3
|
oveq2d |
⊢ ( 𝑦 = 𝐴 → ( ℝ ↑m { 𝑦 } ) = ( ℝ ↑m { 𝐴 } ) ) |
| 9 |
|
f1oeq3 |
⊢ ( ( ℝ ↑m { 𝑦 } ) = ( ℝ ↑m { 𝐴 } ) → ( 𝐹 : ℝ –1-1-onto→ ( ℝ ↑m { 𝑦 } ) ↔ 𝐹 : ℝ –1-1-onto→ ( ℝ ↑m { 𝐴 } ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑦 = 𝐴 → ( 𝐹 : ℝ –1-1-onto→ ( ℝ ↑m { 𝑦 } ) ↔ 𝐹 : ℝ –1-1-onto→ ( ℝ ↑m { 𝐴 } ) ) ) |
| 11 |
7 10
|
bitrd |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ∈ ℝ ↦ ( { 𝑦 } × { 𝑥 } ) ) : ℝ –1-1-onto→ ( ℝ ↑m { 𝑦 } ) ↔ 𝐹 : ℝ –1-1-onto→ ( ℝ ↑m { 𝐴 } ) ) ) |
| 12 |
|
eqid |
⊢ { 𝑦 } = { 𝑦 } |
| 13 |
|
reex |
⊢ ℝ ∈ V |
| 14 |
|
vex |
⊢ 𝑦 ∈ V |
| 15 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ ( { 𝑦 } × { 𝑥 } ) ) = ( 𝑥 ∈ ℝ ↦ ( { 𝑦 } × { 𝑥 } ) ) |
| 16 |
12 13 14 15
|
mapsnf1o3 |
⊢ ( 𝑥 ∈ ℝ ↦ ( { 𝑦 } × { 𝑥 } ) ) : ℝ –1-1-onto→ ( ℝ ↑m { 𝑦 } ) |
| 17 |
11 16
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : ℝ –1-1-onto→ ( ℝ ↑m { 𝐴 } ) ) |
| 18 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
| 19 |
18
|
xpeq2d |
⊢ ( 𝑥 = 𝑦 → ( { 𝐴 } × { 𝑥 } ) = ( { 𝐴 } × { 𝑦 } ) ) |
| 20 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 21 |
|
snex |
⊢ { 𝑥 } ∈ V |
| 22 |
20 21
|
xpex |
⊢ ( { 𝐴 } × { 𝑥 } ) ∈ V |
| 23 |
19 2 22
|
fvmpt3i |
⊢ ( 𝑦 ∈ ℝ → ( 𝐹 ‘ 𝑦 ) = ( { 𝐴 } × { 𝑦 } ) ) |
| 24 |
23
|
fveq1d |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) = ( ( { 𝐴 } × { 𝑦 } ) ‘ 𝐴 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) = ( ( { 𝐴 } × { 𝑦 } ) ‘ 𝐴 ) ) |
| 26 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) |
| 27 |
|
fvconst2g |
⊢ ( ( 𝑦 ∈ V ∧ 𝐴 ∈ { 𝐴 } ) → ( ( { 𝐴 } × { 𝑦 } ) ‘ 𝐴 ) = 𝑦 ) |
| 28 |
14 26 27
|
sylancr |
⊢ ( 𝐴 ∈ 𝑉 → ( ( { 𝐴 } × { 𝑦 } ) ‘ 𝐴 ) = 𝑦 ) |
| 29 |
25 28
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) = 𝑦 ) |
| 30 |
|
sneq |
⊢ ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } ) |
| 31 |
30
|
xpeq2d |
⊢ ( 𝑥 = 𝑧 → ( { 𝐴 } × { 𝑥 } ) = ( { 𝐴 } × { 𝑧 } ) ) |
| 32 |
31 2 22
|
fvmpt3i |
⊢ ( 𝑧 ∈ ℝ → ( 𝐹 ‘ 𝑧 ) = ( { 𝐴 } × { 𝑧 } ) ) |
| 33 |
32
|
fveq1d |
⊢ ( 𝑧 ∈ ℝ → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) = ( ( { 𝐴 } × { 𝑧 } ) ‘ 𝐴 ) ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) = ( ( { 𝐴 } × { 𝑧 } ) ‘ 𝐴 ) ) |
| 35 |
|
vex |
⊢ 𝑧 ∈ V |
| 36 |
|
fvconst2g |
⊢ ( ( 𝑧 ∈ V ∧ 𝐴 ∈ { 𝐴 } ) → ( ( { 𝐴 } × { 𝑧 } ) ‘ 𝐴 ) = 𝑧 ) |
| 37 |
35 26 36
|
sylancr |
⊢ ( 𝐴 ∈ 𝑉 → ( ( { 𝐴 } × { 𝑧 } ) ‘ 𝐴 ) = 𝑧 ) |
| 38 |
34 37
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) = 𝑧 ) |
| 39 |
29 38
|
oveq12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) ) = ( 𝑦 − 𝑧 ) ) |
| 40 |
39
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝑦 − 𝑧 ) ↑ 2 ) ) |
| 41 |
|
resubcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 − 𝑧 ) ∈ ℝ ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( 𝑦 − 𝑧 ) ∈ ℝ ) |
| 43 |
|
absresq |
⊢ ( ( 𝑦 − 𝑧 ) ∈ ℝ → ( ( abs ‘ ( 𝑦 − 𝑧 ) ) ↑ 2 ) = ( ( 𝑦 − 𝑧 ) ↑ 2 ) ) |
| 44 |
42 43
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( abs ‘ ( 𝑦 − 𝑧 ) ) ↑ 2 ) = ( ( 𝑦 − 𝑧 ) ↑ 2 ) ) |
| 45 |
40 44
|
eqtr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( abs ‘ ( 𝑦 − 𝑧 ) ) ↑ 2 ) ) |
| 46 |
42
|
recnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( 𝑦 − 𝑧 ) ∈ ℂ ) |
| 47 |
46
|
abscld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( abs ‘ ( 𝑦 − 𝑧 ) ) ∈ ℝ ) |
| 48 |
47
|
recnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( abs ‘ ( 𝑦 − 𝑧 ) ) ∈ ℂ ) |
| 49 |
48
|
sqcld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( abs ‘ ( 𝑦 − 𝑧 ) ) ↑ 2 ) ∈ ℂ ) |
| 50 |
45 49
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℂ ) |
| 51 |
|
fveq2 |
⊢ ( 𝑘 = 𝐴 → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) ) |
| 52 |
|
fveq2 |
⊢ ( 𝑘 = 𝐴 → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) ) |
| 53 |
51 52
|
oveq12d |
⊢ ( 𝑘 = 𝐴 → ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) = ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) ) ) |
| 54 |
53
|
oveq1d |
⊢ ( 𝑘 = 𝐴 → ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) ) ↑ 2 ) ) |
| 55 |
54
|
sumsn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℂ ) → Σ 𝑘 ∈ { 𝐴 } ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) ) ↑ 2 ) ) |
| 56 |
50 55
|
syldan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → Σ 𝑘 ∈ { 𝐴 } ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝐴 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝐴 ) ) ↑ 2 ) ) |
| 57 |
56 45
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → Σ 𝑘 ∈ { 𝐴 } ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ↑ 2 ) = ( ( abs ‘ ( 𝑦 − 𝑧 ) ) ↑ 2 ) ) |
| 58 |
57
|
fveq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( √ ‘ Σ 𝑘 ∈ { 𝐴 } ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ ( ( abs ‘ ( 𝑦 − 𝑧 ) ) ↑ 2 ) ) ) |
| 59 |
46
|
absge0d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → 0 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 60 |
47 59
|
sqrtsqd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( √ ‘ ( ( abs ‘ ( 𝑦 − 𝑧 ) ) ↑ 2 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 61 |
58 60
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( √ ‘ Σ 𝑘 ∈ { 𝐴 } ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ↑ 2 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 62 |
|
f1of |
⊢ ( 𝐹 : ℝ –1-1-onto→ ( ℝ ↑m { 𝐴 } ) → 𝐹 : ℝ ⟶ ( ℝ ↑m { 𝐴 } ) ) |
| 63 |
17 62
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : ℝ ⟶ ( ℝ ↑m { 𝐴 } ) ) |
| 64 |
63
|
ffvelcdmda |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ ↑m { 𝐴 } ) ) |
| 65 |
63
|
ffvelcdmda |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ( ℝ ↑m { 𝐴 } ) ) |
| 66 |
64 65
|
anim12dan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ ↑m { 𝐴 } ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ℝ ↑m { 𝐴 } ) ) ) |
| 67 |
|
snfi |
⊢ { 𝐴 } ∈ Fin |
| 68 |
|
eqid |
⊢ ( ℝ ↑m { 𝐴 } ) = ( ℝ ↑m { 𝐴 } ) |
| 69 |
68
|
rrnmval |
⊢ ( ( { 𝐴 } ∈ Fin ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ ↑m { 𝐴 } ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ℝ ↑m { 𝐴 } ) ) → ( ( 𝐹 ‘ 𝑦 ) ( ℝn ‘ { 𝐴 } ) ( 𝐹 ‘ 𝑧 ) ) = ( √ ‘ Σ 𝑘 ∈ { 𝐴 } ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 70 |
67 69
|
mp3an1 |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ ↑m { 𝐴 } ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ℝ ↑m { 𝐴 } ) ) → ( ( 𝐹 ‘ 𝑦 ) ( ℝn ‘ { 𝐴 } ) ( 𝐹 ‘ 𝑧 ) ) = ( √ ‘ Σ 𝑘 ∈ { 𝐴 } ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 71 |
66 70
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) ( ℝn ‘ { 𝐴 } ) ( 𝐹 ‘ 𝑧 ) ) = ( √ ‘ Σ 𝑘 ∈ { 𝐴 } ( ( ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 72 |
1
|
remetdval |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 𝑅 𝑧 ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 73 |
72
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( 𝑦 𝑅 𝑧 ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 74 |
61 71 73
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( 𝑦 𝑅 𝑧 ) = ( ( 𝐹 ‘ 𝑦 ) ( ℝn ‘ { 𝐴 } ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 75 |
74
|
ralrimivva |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ℝ ( 𝑦 𝑅 𝑧 ) = ( ( 𝐹 ‘ 𝑦 ) ( ℝn ‘ { 𝐴 } ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 76 |
1
|
rexmet |
⊢ 𝑅 ∈ ( ∞Met ‘ ℝ ) |
| 77 |
68
|
rrnmet |
⊢ ( { 𝐴 } ∈ Fin → ( ℝn ‘ { 𝐴 } ) ∈ ( Met ‘ ( ℝ ↑m { 𝐴 } ) ) ) |
| 78 |
|
metxmet |
⊢ ( ( ℝn ‘ { 𝐴 } ) ∈ ( Met ‘ ( ℝ ↑m { 𝐴 } ) ) → ( ℝn ‘ { 𝐴 } ) ∈ ( ∞Met ‘ ( ℝ ↑m { 𝐴 } ) ) ) |
| 79 |
67 77 78
|
mp2b |
⊢ ( ℝn ‘ { 𝐴 } ) ∈ ( ∞Met ‘ ( ℝ ↑m { 𝐴 } ) ) |
| 80 |
|
isismty |
⊢ ( ( 𝑅 ∈ ( ∞Met ‘ ℝ ) ∧ ( ℝn ‘ { 𝐴 } ) ∈ ( ∞Met ‘ ( ℝ ↑m { 𝐴 } ) ) ) → ( 𝐹 ∈ ( 𝑅 Ismty ( ℝn ‘ { 𝐴 } ) ) ↔ ( 𝐹 : ℝ –1-1-onto→ ( ℝ ↑m { 𝐴 } ) ∧ ∀ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ℝ ( 𝑦 𝑅 𝑧 ) = ( ( 𝐹 ‘ 𝑦 ) ( ℝn ‘ { 𝐴 } ) ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 81 |
76 79 80
|
mp2an |
⊢ ( 𝐹 ∈ ( 𝑅 Ismty ( ℝn ‘ { 𝐴 } ) ) ↔ ( 𝐹 : ℝ –1-1-onto→ ( ℝ ↑m { 𝐴 } ) ∧ ∀ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ℝ ( 𝑦 𝑅 𝑧 ) = ( ( 𝐹 ‘ 𝑦 ) ( ℝn ‘ { 𝐴 } ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 82 |
17 75 81
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 ∈ ( 𝑅 Ismty ( ℝn ‘ { 𝐴 } ) ) ) |