Step |
Hyp |
Ref |
Expression |
1 |
|
reheibor.2 |
⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( 𝑌 × 𝑌 ) ) |
2 |
|
reheibor.3 |
⊢ 𝑇 = ( MetOpen ‘ 𝑀 ) |
3 |
|
reheibor.4 |
⊢ 𝑈 = ( topGen ‘ ran (,) ) |
4 |
|
df1o2 |
⊢ 1o = { ∅ } |
5 |
|
snfi |
⊢ { ∅ } ∈ Fin |
6 |
4 5
|
eqeltri |
⊢ 1o ∈ Fin |
7 |
|
imassrn |
⊢ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ⊆ ran ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) |
8 |
|
0ex |
⊢ ∅ ∈ V |
9 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) = ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) |
11 |
9 10
|
ismrer1 |
⊢ ( ∅ ∈ V → ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ∈ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Ismty ( ℝn ‘ { ∅ } ) ) ) |
12 |
8 11
|
ax-mp |
⊢ ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ∈ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Ismty ( ℝn ‘ { ∅ } ) ) |
13 |
4
|
fveq2i |
⊢ ( ℝn ‘ 1o ) = ( ℝn ‘ { ∅ } ) |
14 |
13
|
oveq2i |
⊢ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Ismty ( ℝn ‘ 1o ) ) = ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Ismty ( ℝn ‘ { ∅ } ) ) |
15 |
12 14
|
eleqtrri |
⊢ ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ∈ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Ismty ( ℝn ‘ 1o ) ) |
16 |
9
|
rexmet |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) |
17 |
|
eqid |
⊢ ( ℝ ↑m 1o ) = ( ℝ ↑m 1o ) |
18 |
17
|
rrnmet |
⊢ ( 1o ∈ Fin → ( ℝn ‘ 1o ) ∈ ( Met ‘ ( ℝ ↑m 1o ) ) ) |
19 |
|
metxmet |
⊢ ( ( ℝn ‘ 1o ) ∈ ( Met ‘ ( ℝ ↑m 1o ) ) → ( ℝn ‘ 1o ) ∈ ( ∞Met ‘ ( ℝ ↑m 1o ) ) ) |
20 |
6 18 19
|
mp2b |
⊢ ( ℝn ‘ 1o ) ∈ ( ∞Met ‘ ( ℝ ↑m 1o ) ) |
21 |
|
isismty |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( ℝn ‘ 1o ) ∈ ( ∞Met ‘ ( ℝ ↑m 1o ) ) ) → ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ∈ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Ismty ( ℝn ‘ 1o ) ) ↔ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) : ℝ –1-1-onto→ ( ℝ ↑m 1o ) ∧ ∀ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ℝ ( 𝑦 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑧 ) = ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ‘ 𝑦 ) ( ℝn ‘ 1o ) ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ‘ 𝑧 ) ) ) ) ) |
22 |
16 20 21
|
mp2an |
⊢ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ∈ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Ismty ( ℝn ‘ 1o ) ) ↔ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) : ℝ –1-1-onto→ ( ℝ ↑m 1o ) ∧ ∀ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ℝ ( 𝑦 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑧 ) = ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ‘ 𝑦 ) ( ℝn ‘ 1o ) ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ‘ 𝑧 ) ) ) ) |
23 |
15 22
|
mpbi |
⊢ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) : ℝ –1-1-onto→ ( ℝ ↑m 1o ) ∧ ∀ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ℝ ( 𝑦 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑧 ) = ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ‘ 𝑦 ) ( ℝn ‘ 1o ) ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ‘ 𝑧 ) ) ) |
24 |
23
|
simpli |
⊢ ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) : ℝ –1-1-onto→ ( ℝ ↑m 1o ) |
25 |
|
f1of |
⊢ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) : ℝ –1-1-onto→ ( ℝ ↑m 1o ) → ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) : ℝ ⟶ ( ℝ ↑m 1o ) ) |
26 |
|
frn |
⊢ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) : ℝ ⟶ ( ℝ ↑m 1o ) → ran ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ⊆ ( ℝ ↑m 1o ) ) |
27 |
24 25 26
|
mp2b |
⊢ ran ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ⊆ ( ℝ ↑m 1o ) |
28 |
7 27
|
sstri |
⊢ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ⊆ ( ℝ ↑m 1o ) |
29 |
28
|
a1i |
⊢ ( 𝑌 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ⊆ ( ℝ ↑m 1o ) ) |
30 |
|
eqid |
⊢ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) = ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) |
31 |
|
eqid |
⊢ ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) = ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) |
32 |
|
eqid |
⊢ ( MetOpen ‘ ( ℝn ‘ 1o ) ) = ( MetOpen ‘ ( ℝn ‘ 1o ) ) |
33 |
17 30 31 32
|
rrnheibor |
⊢ ( ( 1o ∈ Fin ∧ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ⊆ ( ℝ ↑m 1o ) ) → ( ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ∈ Comp ↔ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ∈ ( Clsd ‘ ( MetOpen ‘ ( ℝn ‘ 1o ) ) ) ∧ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ∈ ( Bnd ‘ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) |
34 |
6 29 33
|
sylancr |
⊢ ( 𝑌 ⊆ ℝ → ( ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ∈ Comp ↔ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ∈ ( Clsd ‘ ( MetOpen ‘ ( ℝn ‘ 1o ) ) ) ∧ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ∈ ( Bnd ‘ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) |
35 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
36 |
|
id |
⊢ ( 𝑌 ⊆ ℝ → 𝑌 ⊆ ℝ ) |
37 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
38 |
36 37
|
sstrdi |
⊢ ( 𝑌 ⊆ ℝ → 𝑌 ⊆ ℂ ) |
39 |
|
xmetres2 |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑌 ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
40 |
35 38 39
|
sylancr |
⊢ ( 𝑌 ⊆ ℝ → ( ( abs ∘ − ) ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
41 |
1 40
|
eqeltrid |
⊢ ( 𝑌 ⊆ ℝ → 𝑀 ∈ ( ∞Met ‘ 𝑌 ) ) |
42 |
|
xmetres2 |
⊢ ( ( ( ℝn ‘ 1o ) ∈ ( ∞Met ‘ ( ℝ ↑m 1o ) ) ∧ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ⊆ ( ℝ ↑m 1o ) ) → ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ∈ ( ∞Met ‘ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) |
43 |
20 29 42
|
sylancr |
⊢ ( 𝑌 ⊆ ℝ → ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ∈ ( ∞Met ‘ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) |
44 |
2 31
|
ismtyhmeo |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ∈ ( ∞Met ‘ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) → ( 𝑀 Ismty ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ⊆ ( 𝑇 Homeo ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) ) |
45 |
41 43 44
|
syl2anc |
⊢ ( 𝑌 ⊆ ℝ → ( 𝑀 Ismty ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ⊆ ( 𝑇 Homeo ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) ) |
46 |
16
|
a1i |
⊢ ( 𝑌 ⊆ ℝ → ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ) |
47 |
20
|
a1i |
⊢ ( 𝑌 ⊆ ℝ → ( ℝn ‘ 1o ) ∈ ( ∞Met ‘ ( ℝ ↑m 1o ) ) ) |
48 |
15
|
a1i |
⊢ ( 𝑌 ⊆ ℝ → ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ∈ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Ismty ( ℝn ‘ 1o ) ) ) |
49 |
|
eqid |
⊢ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) = ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) |
50 |
|
eqid |
⊢ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝑌 × 𝑌 ) ) = ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝑌 × 𝑌 ) ) |
51 |
49 50 30
|
ismtyres |
⊢ ( ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( ℝn ‘ 1o ) ∈ ( ∞Met ‘ ( ℝ ↑m 1o ) ) ) ∧ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ∈ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Ismty ( ℝn ‘ 1o ) ) ∧ 𝑌 ⊆ ℝ ) ) → ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ↾ 𝑌 ) ∈ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝑌 × 𝑌 ) ) Ismty ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) |
52 |
46 47 48 36 51
|
syl22anc |
⊢ ( 𝑌 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ↾ 𝑌 ) ∈ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝑌 × 𝑌 ) ) Ismty ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) |
53 |
|
xpss12 |
⊢ ( ( 𝑌 ⊆ ℝ ∧ 𝑌 ⊆ ℝ ) → ( 𝑌 × 𝑌 ) ⊆ ( ℝ × ℝ ) ) |
54 |
53
|
anidms |
⊢ ( 𝑌 ⊆ ℝ → ( 𝑌 × 𝑌 ) ⊆ ( ℝ × ℝ ) ) |
55 |
54
|
resabs1d |
⊢ ( 𝑌 ⊆ ℝ → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝑌 × 𝑌 ) ) = ( ( abs ∘ − ) ↾ ( 𝑌 × 𝑌 ) ) ) |
56 |
55 1
|
eqtr4di |
⊢ ( 𝑌 ⊆ ℝ → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝑌 × 𝑌 ) ) = 𝑀 ) |
57 |
56
|
oveq1d |
⊢ ( 𝑌 ⊆ ℝ → ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝑌 × 𝑌 ) ) Ismty ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) = ( 𝑀 Ismty ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) |
58 |
52 57
|
eleqtrd |
⊢ ( 𝑌 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ↾ 𝑌 ) ∈ ( 𝑀 Ismty ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) |
59 |
45 58
|
sseldd |
⊢ ( 𝑌 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ↾ 𝑌 ) ∈ ( 𝑇 Homeo ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) ) |
60 |
|
hmphi |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ↾ 𝑌 ) ∈ ( 𝑇 Homeo ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) → 𝑇 ≃ ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) |
61 |
59 60
|
syl |
⊢ ( 𝑌 ⊆ ℝ → 𝑇 ≃ ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) |
62 |
|
cmphmph |
⊢ ( 𝑇 ≃ ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) → ( 𝑇 ∈ Comp → ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ∈ Comp ) ) |
63 |
|
hmphsym |
⊢ ( 𝑇 ≃ ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) → ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ≃ 𝑇 ) |
64 |
|
cmphmph |
⊢ ( ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ≃ 𝑇 → ( ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ∈ Comp → 𝑇 ∈ Comp ) ) |
65 |
63 64
|
syl |
⊢ ( 𝑇 ≃ ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) → ( ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ∈ Comp → 𝑇 ∈ Comp ) ) |
66 |
62 65
|
impbid |
⊢ ( 𝑇 ≃ ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) → ( 𝑇 ∈ Comp ↔ ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ∈ Comp ) ) |
67 |
61 66
|
syl |
⊢ ( 𝑌 ⊆ ℝ → ( 𝑇 ∈ Comp ↔ ( MetOpen ‘ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ∈ Comp ) ) |
68 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
69 |
9 68
|
tgioo |
⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
70 |
3 69
|
eqtri |
⊢ 𝑈 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
71 |
70 32
|
ismtyhmeo |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( ℝn ‘ 1o ) ∈ ( ∞Met ‘ ( ℝ ↑m 1o ) ) ) → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Ismty ( ℝn ‘ 1o ) ) ⊆ ( 𝑈 Homeo ( MetOpen ‘ ( ℝn ‘ 1o ) ) ) ) |
72 |
16 20 71
|
mp2an |
⊢ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Ismty ( ℝn ‘ 1o ) ) ⊆ ( 𝑈 Homeo ( MetOpen ‘ ( ℝn ‘ 1o ) ) ) |
73 |
72 15
|
sselii |
⊢ ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ∈ ( 𝑈 Homeo ( MetOpen ‘ ( ℝn ‘ 1o ) ) ) |
74 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
75 |
3 74
|
eqeltri |
⊢ 𝑈 ∈ ( TopOn ‘ ℝ ) |
76 |
75
|
toponunii |
⊢ ℝ = ∪ 𝑈 |
77 |
76
|
hmeocld |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ∈ ( 𝑈 Homeo ( MetOpen ‘ ( ℝn ‘ 1o ) ) ) ∧ 𝑌 ⊆ ℝ ) → ( 𝑌 ∈ ( Clsd ‘ 𝑈 ) ↔ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ∈ ( Clsd ‘ ( MetOpen ‘ ( ℝn ‘ 1o ) ) ) ) ) |
78 |
73 36 77
|
sylancr |
⊢ ( 𝑌 ⊆ ℝ → ( 𝑌 ∈ ( Clsd ‘ 𝑈 ) ↔ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ∈ ( Clsd ‘ ( MetOpen ‘ ( ℝn ‘ 1o ) ) ) ) ) |
79 |
|
ismtybnd |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ∈ ( ∞Met ‘ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ∧ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) ↾ 𝑌 ) ∈ ( 𝑀 Ismty ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) → ( 𝑀 ∈ ( Bnd ‘ 𝑌 ) ↔ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ∈ ( Bnd ‘ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) |
80 |
41 43 58 79
|
syl3anc |
⊢ ( 𝑌 ⊆ ℝ → ( 𝑀 ∈ ( Bnd ‘ 𝑌 ) ↔ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ∈ ( Bnd ‘ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) |
81 |
78 80
|
anbi12d |
⊢ ( 𝑌 ⊆ ℝ → ( ( 𝑌 ∈ ( Clsd ‘ 𝑈 ) ∧ 𝑀 ∈ ( Bnd ‘ 𝑌 ) ) ↔ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ∈ ( Clsd ‘ ( MetOpen ‘ ( ℝn ‘ 1o ) ) ) ∧ ( ( ℝn ‘ 1o ) ↾ ( ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) × ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ∈ ( Bnd ‘ ( ( 𝑥 ∈ ℝ ↦ ( { ∅ } × { 𝑥 } ) ) “ 𝑌 ) ) ) ) ) |
82 |
34 67 81
|
3bitr4d |
⊢ ( 𝑌 ⊆ ℝ → ( 𝑇 ∈ Comp ↔ ( 𝑌 ∈ ( Clsd ‘ 𝑈 ) ∧ 𝑀 ∈ ( Bnd ‘ 𝑌 ) ) ) ) |