Metamath Proof Explorer


Theorem ismtybnd

Description: Isometries preserve boundedness. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 19-Jan-2014)

Ref Expression
Assertion ismtybnd ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ) → ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ 𝑁 ∈ ( Bnd ‘ 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 ismtybndlem ( ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ) → ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → 𝑁 ∈ ( Bnd ‘ 𝑌 ) ) )
2 1 3adant1 ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ) → ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → 𝑁 ∈ ( Bnd ‘ 𝑌 ) ) )
3 ismtycnv ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) → 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ) )
4 3 3impia ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ) → 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) )
5 ismtybndlem ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ) → ( 𝑁 ∈ ( Bnd ‘ 𝑌 ) → 𝑀 ∈ ( Bnd ‘ 𝑋 ) ) )
6 5 3adant2 ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ) → ( 𝑁 ∈ ( Bnd ‘ 𝑌 ) → 𝑀 ∈ ( Bnd ‘ 𝑋 ) ) )
7 4 6 syld3an3 ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ) → ( 𝑁 ∈ ( Bnd ‘ 𝑌 ) → 𝑀 ∈ ( Bnd ‘ 𝑋 ) ) )
8 2 7 impbid ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ) → ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ 𝑁 ∈ ( Bnd ‘ 𝑌 ) ) )