Metamath Proof Explorer


Theorem ismtybnd

Description: Isometries preserve boundedness. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 19-Jan-2014)

Ref Expression
Assertion ismtybnd M∞MetXN∞MetYFMIsmtyNMBndXNBndY

Proof

Step Hyp Ref Expression
1 ismtybndlem N∞MetYFMIsmtyNMBndXNBndY
2 1 3adant1 M∞MetXN∞MetYFMIsmtyNMBndXNBndY
3 ismtycnv M∞MetXN∞MetYFMIsmtyNF-1NIsmtyM
4 3 3impia M∞MetXN∞MetYFMIsmtyNF-1NIsmtyM
5 ismtybndlem M∞MetXF-1NIsmtyMNBndYMBndX
6 5 3adant2 M∞MetXN∞MetYF-1NIsmtyMNBndYMBndX
7 4 6 syld3an3 M∞MetXN∞MetYFMIsmtyNNBndYMBndX
8 2 7 impbid M∞MetXN∞MetYFMIsmtyNMBndXNBndY