Description: Define a function which takes two metric spaces and returns the set of isometries between the spaces. An isometry is a bijection which preserves distance. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ismty | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cismty | |
|
1 | vm | |
|
2 | cxmet | |
|
3 | 2 | crn | |
4 | 3 | cuni | |
5 | vn | |
|
6 | vf | |
|
7 | 6 | cv | |
8 | 1 | cv | |
9 | 8 | cdm | |
10 | 9 | cdm | |
11 | 5 | cv | |
12 | 11 | cdm | |
13 | 12 | cdm | |
14 | 10 13 7 | wf1o | |
15 | vx | |
|
16 | vy | |
|
17 | 15 | cv | |
18 | 16 | cv | |
19 | 17 18 8 | co | |
20 | 17 7 | cfv | |
21 | 18 7 | cfv | |
22 | 20 21 11 | co | |
23 | 19 22 | wceq | |
24 | 23 16 10 | wral | |
25 | 24 15 10 | wral | |
26 | 14 25 | wa | |
27 | 26 6 | cab | |
28 | 1 5 4 4 27 | cmpo | |
29 | 0 28 | wceq | |