Metamath Proof Explorer


Theorem ismtycnv

Description: The inverse of an isometry is an isometry. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion ismtycnv M∞MetXN∞MetYFMIsmtyNF-1NIsmtyM

Proof

Step Hyp Ref Expression
1 f1ocnv F:X1-1 ontoYF-1:Y1-1 ontoX
2 1 adantr F:X1-1 ontoYxXyXxMy=FxNFyF-1:Y1-1 ontoX
3 f1ocnvdm F:X1-1 ontoYuYF-1uX
4 3 ex F:X1-1 ontoYuYF-1uX
5 f1ocnvdm F:X1-1 ontoYvYF-1vX
6 5 ex F:X1-1 ontoYvYF-1vX
7 4 6 anim12d F:X1-1 ontoYuYvYF-1uXF-1vX
8 7 adantr F:X1-1 ontoYxXyXxMy=FxNFyuYvYF-1uXF-1vX
9 8 imdistani F:X1-1 ontoYxXyXxMy=FxNFyuYvYF:X1-1 ontoYxXyXxMy=FxNFyF-1uXF-1vX
10 oveq1 x=F-1uxMy=F-1uMy
11 fveq2 x=F-1uFx=FF-1u
12 11 oveq1d x=F-1uFxNFy=FF-1uNFy
13 10 12 eqeq12d x=F-1uxMy=FxNFyF-1uMy=FF-1uNFy
14 oveq2 y=F-1vF-1uMy=F-1uMF-1v
15 fveq2 y=F-1vFy=FF-1v
16 15 oveq2d y=F-1vFF-1uNFy=FF-1uNFF-1v
17 14 16 eqeq12d y=F-1vF-1uMy=FF-1uNFyF-1uMF-1v=FF-1uNFF-1v
18 13 17 rspc2v F-1uXF-1vXxXyXxMy=FxNFyF-1uMF-1v=FF-1uNFF-1v
19 18 impcom xXyXxMy=FxNFyF-1uXF-1vXF-1uMF-1v=FF-1uNFF-1v
20 19 adantll F:X1-1 ontoYxXyXxMy=FxNFyF-1uXF-1vXF-1uMF-1v=FF-1uNFF-1v
21 9 20 syl F:X1-1 ontoYxXyXxMy=FxNFyuYvYF-1uMF-1v=FF-1uNFF-1v
22 f1ocnvfv2 F:X1-1 ontoYuYFF-1u=u
23 22 adantrr F:X1-1 ontoYuYvYFF-1u=u
24 f1ocnvfv2 F:X1-1 ontoYvYFF-1v=v
25 24 adantrl F:X1-1 ontoYuYvYFF-1v=v
26 23 25 oveq12d F:X1-1 ontoYuYvYFF-1uNFF-1v=uNv
27 26 adantlr F:X1-1 ontoYxXyXxMy=FxNFyuYvYFF-1uNFF-1v=uNv
28 21 27 eqtr2d F:X1-1 ontoYxXyXxMy=FxNFyuYvYuNv=F-1uMF-1v
29 28 ralrimivva F:X1-1 ontoYxXyXxMy=FxNFyuYvYuNv=F-1uMF-1v
30 2 29 jca F:X1-1 ontoYxXyXxMy=FxNFyF-1:Y1-1 ontoXuYvYuNv=F-1uMF-1v
31 30 a1i M∞MetXN∞MetYF:X1-1 ontoYxXyXxMy=FxNFyF-1:Y1-1 ontoXuYvYuNv=F-1uMF-1v
32 isismty M∞MetXN∞MetYFMIsmtyNF:X1-1 ontoYxXyXxMy=FxNFy
33 isismty N∞MetYM∞MetXF-1NIsmtyMF-1:Y1-1 ontoXuYvYuNv=F-1uMF-1v
34 33 ancoms M∞MetXN∞MetYF-1NIsmtyMF-1:Y1-1 ontoXuYvYuNv=F-1uMF-1v
35 31 32 34 3imtr4d M∞MetXN∞MetYFMIsmtyNF-1NIsmtyM