Description: The inverse of an isometry is an isometry. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | ismtycnv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv | |
|
2 | 1 | adantr | |
3 | f1ocnvdm | |
|
4 | 3 | ex | |
5 | f1ocnvdm | |
|
6 | 5 | ex | |
7 | 4 6 | anim12d | |
8 | 7 | adantr | |
9 | 8 | imdistani | |
10 | oveq1 | |
|
11 | fveq2 | |
|
12 | 11 | oveq1d | |
13 | 10 12 | eqeq12d | |
14 | oveq2 | |
|
15 | fveq2 | |
|
16 | 15 | oveq2d | |
17 | 14 16 | eqeq12d | |
18 | 13 17 | rspc2v | |
19 | 18 | impcom | |
20 | 19 | adantll | |
21 | 9 20 | syl | |
22 | f1ocnvfv2 | |
|
23 | 22 | adantrr | |
24 | f1ocnvfv2 | |
|
25 | 24 | adantrl | |
26 | 23 25 | oveq12d | |
27 | 26 | adantlr | |
28 | 21 27 | eqtr2d | |
29 | 28 | ralrimivva | |
30 | 2 29 | jca | |
31 | 30 | a1i | |
32 | isismty | |
|
33 | isismty | |
|
34 | 33 | ancoms | |
35 | 31 32 34 | 3imtr4d | |