Step |
Hyp |
Ref |
Expression |
1 |
|
icccmp.1 |
|
2 |
|
icccmp.2 |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
simplll |
|
6 |
|
simpllr |
|
7 |
|
simplr |
|
8 |
|
elpwi |
|
9 |
8
|
ad2antrl |
|
10 |
|
simprr |
|
11 |
1 2 3 4 5 6 7 9 10
|
icccmplem3 |
|
12 |
|
oveq2 |
|
13 |
12
|
sseq1d |
|
14 |
13
|
rexbidv |
|
15 |
14
|
elrab |
|
16 |
15
|
simprbi |
|
17 |
11 16
|
syl |
|
18 |
17
|
expr |
|
19 |
18
|
ralrimiva |
|
20 |
|
retop |
|
21 |
1 20
|
eqeltri |
|
22 |
|
iccssre |
|
23 |
22
|
adantr |
|
24 |
|
uniretop |
|
25 |
1
|
unieqi |
|
26 |
24 25
|
eqtr4i |
|
27 |
26
|
cmpsub |
|
28 |
21 23 27
|
sylancr |
|
29 |
19 28
|
mpbird |
|
30 |
|
rexr |
|
31 |
|
rexr |
|
32 |
|
icc0 |
|
33 |
30 31 32
|
syl2an |
|
34 |
33
|
biimpar |
|
35 |
34
|
oveq2d |
|
36 |
|
rest0 |
|
37 |
21 36
|
ax-mp |
|
38 |
35 37
|
eqtrdi |
|
39 |
|
0cmp |
|
40 |
38 39
|
eqeltrdi |
|
41 |
|
lelttric |
|
42 |
29 40 41
|
mpjaodan |
|
43 |
2 42
|
eqeltrid |
|