| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prunioo |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
| 2 |
1
|
eqcomd |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A [,] B ) = ( ( A (,) B ) u. { A , B } ) ) |
| 3 |
2
|
difeq1d |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A [,] B ) \ { A , B } ) = ( ( ( A (,) B ) u. { A , B } ) \ { A , B } ) ) |
| 4 |
|
difun2 |
|- ( ( ( A (,) B ) u. { A , B } ) \ { A , B } ) = ( ( A (,) B ) \ { A , B } ) |
| 5 |
|
iooinlbub |
|- ( ( A (,) B ) i^i { A , B } ) = (/) |
| 6 |
|
disj3 |
|- ( ( ( A (,) B ) i^i { A , B } ) = (/) <-> ( A (,) B ) = ( ( A (,) B ) \ { A , B } ) ) |
| 7 |
5 6
|
mpbi |
|- ( A (,) B ) = ( ( A (,) B ) \ { A , B } ) |
| 8 |
4 7
|
eqtr4i |
|- ( ( ( A (,) B ) u. { A , B } ) \ { A , B } ) = ( A (,) B ) |
| 9 |
3 8
|
eqtrdi |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A [,] B ) \ { A , B } ) = ( A (,) B ) ) |
| 10 |
9
|
3expa |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A <_ B ) -> ( ( A [,] B ) \ { A , B } ) = ( A (,) B ) ) |
| 11 |
|
difssd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( ( A [,] B ) \ { A , B } ) C_ ( A [,] B ) ) |
| 12 |
|
simpr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> -. A <_ B ) |
| 13 |
|
xrlenlt |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) ) |
| 14 |
13
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( A <_ B <-> -. B < A ) ) |
| 15 |
12 14
|
mtbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> -. -. B < A ) |
| 16 |
15
|
notnotrd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> B < A ) |
| 17 |
|
icc0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 18 |
17
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 19 |
16 18
|
mpbird |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( A [,] B ) = (/) ) |
| 20 |
11 19
|
sseqtrd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( ( A [,] B ) \ { A , B } ) C_ (/) ) |
| 21 |
|
ss0 |
|- ( ( ( A [,] B ) \ { A , B } ) C_ (/) -> ( ( A [,] B ) \ { A , B } ) = (/) ) |
| 22 |
20 21
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( ( A [,] B ) \ { A , B } ) = (/) ) |
| 23 |
|
simplr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> B e. RR* ) |
| 24 |
|
simpll |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> A e. RR* ) |
| 25 |
23 24 16
|
xrltled |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> B <_ A ) |
| 26 |
|
ioo0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 27 |
26
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 28 |
25 27
|
mpbird |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( A (,) B ) = (/) ) |
| 29 |
22 28
|
eqtr4d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( ( A [,] B ) \ { A , B } ) = ( A (,) B ) ) |
| 30 |
10 29
|
pm2.61dan |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) \ { A , B } ) = ( A (,) B ) ) |