| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartgtprec.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 |  | iccpart |  |-  ( M e. NN -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) | 
						
							| 4 |  | elmapfn |  |-  ( P e. ( RR* ^m ( 0 ... M ) ) -> P Fn ( 0 ... M ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) -> P Fn ( 0 ... M ) ) | 
						
							| 6 | 3 5 | biimtrdi |  |-  ( M e. NN -> ( P e. ( RePart ` M ) -> P Fn ( 0 ... M ) ) ) | 
						
							| 7 | 1 2 6 | sylc |  |-  ( ph -> P Fn ( 0 ... M ) ) | 
						
							| 8 | 1 2 | iccpartrn |  |-  ( ph -> ran P C_ ( ( P ` 0 ) [,] ( P ` M ) ) ) | 
						
							| 9 |  | df-f |  |-  ( P : ( 0 ... M ) --> ( ( P ` 0 ) [,] ( P ` M ) ) <-> ( P Fn ( 0 ... M ) /\ ran P C_ ( ( P ` 0 ) [,] ( P ` M ) ) ) ) | 
						
							| 10 | 7 8 9 | sylanbrc |  |-  ( ph -> P : ( 0 ... M ) --> ( ( P ` 0 ) [,] ( P ` M ) ) ) |