| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem15.1 |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 2 |
|
fourierdlem15.2 |
|- ( ph -> M e. NN ) |
| 3 |
|
fourierdlem15.3 |
|- ( ph -> Q e. ( P ` M ) ) |
| 4 |
1
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 5 |
2 4
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 6 |
3 5
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
| 7 |
6
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
| 8 |
|
reex |
|- RR e. _V |
| 9 |
8
|
a1i |
|- ( ph -> RR e. _V ) |
| 10 |
|
ovex |
|- ( 0 ... M ) e. _V |
| 11 |
10
|
a1i |
|- ( ph -> ( 0 ... M ) e. _V ) |
| 12 |
9 11
|
elmapd |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) <-> Q : ( 0 ... M ) --> RR ) ) |
| 13 |
7 12
|
mpbid |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 14 |
|
ffn |
|- ( Q : ( 0 ... M ) --> RR -> Q Fn ( 0 ... M ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> Q Fn ( 0 ... M ) ) |
| 16 |
6
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 17 |
16
|
simpld |
|- ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) |
| 18 |
17
|
simpld |
|- ( ph -> ( Q ` 0 ) = A ) |
| 19 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
| 20 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 21 |
19 20
|
eleqtrdi |
|- ( M e. NN -> M e. ( ZZ>= ` 0 ) ) |
| 22 |
2 21
|
syl |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 23 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
| 24 |
22 23
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 25 |
13 24
|
ffvelcdmd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
| 26 |
18 25
|
eqeltrrd |
|- ( ph -> A e. RR ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> A e. RR ) |
| 28 |
17
|
simprd |
|- ( ph -> ( Q ` M ) = B ) |
| 29 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
| 30 |
22 29
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
| 31 |
13 30
|
ffvelcdmd |
|- ( ph -> ( Q ` M ) e. RR ) |
| 32 |
28 31
|
eqeltrrd |
|- ( ph -> B e. RR ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> B e. RR ) |
| 34 |
13
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
| 35 |
18
|
eqcomd |
|- ( ph -> A = ( Q ` 0 ) ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> A = ( Q ` 0 ) ) |
| 37 |
|
elfzuz |
|- ( i e. ( 0 ... M ) -> i e. ( ZZ>= ` 0 ) ) |
| 38 |
37
|
adantl |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> i e. ( ZZ>= ` 0 ) ) |
| 39 |
13
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... i ) ) -> Q : ( 0 ... M ) --> RR ) |
| 40 |
|
0zd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> 0 e. ZZ ) |
| 41 |
|
elfzel2 |
|- ( i e. ( 0 ... M ) -> M e. ZZ ) |
| 42 |
41
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> M e. ZZ ) |
| 43 |
|
elfzelz |
|- ( j e. ( 0 ... i ) -> j e. ZZ ) |
| 44 |
43
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> j e. ZZ ) |
| 45 |
|
elfzle1 |
|- ( j e. ( 0 ... i ) -> 0 <_ j ) |
| 46 |
45
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> 0 <_ j ) |
| 47 |
43
|
zred |
|- ( j e. ( 0 ... i ) -> j e. RR ) |
| 48 |
47
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> j e. RR ) |
| 49 |
|
elfzelz |
|- ( i e. ( 0 ... M ) -> i e. ZZ ) |
| 50 |
49
|
zred |
|- ( i e. ( 0 ... M ) -> i e. RR ) |
| 51 |
50
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> i e. RR ) |
| 52 |
41
|
zred |
|- ( i e. ( 0 ... M ) -> M e. RR ) |
| 53 |
52
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> M e. RR ) |
| 54 |
|
elfzle2 |
|- ( j e. ( 0 ... i ) -> j <_ i ) |
| 55 |
54
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> j <_ i ) |
| 56 |
|
elfzle2 |
|- ( i e. ( 0 ... M ) -> i <_ M ) |
| 57 |
56
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> i <_ M ) |
| 58 |
48 51 53 55 57
|
letrd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> j <_ M ) |
| 59 |
40 42 44 46 58
|
elfzd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> j e. ( 0 ... M ) ) |
| 60 |
59
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... i ) ) -> j e. ( 0 ... M ) ) |
| 61 |
39 60
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... i ) ) -> ( Q ` j ) e. RR ) |
| 62 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> ph ) |
| 63 |
|
elfzle1 |
|- ( j e. ( 0 ... ( i - 1 ) ) -> 0 <_ j ) |
| 64 |
63
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> 0 <_ j ) |
| 65 |
|
elfzelz |
|- ( j e. ( 0 ... ( i - 1 ) ) -> j e. ZZ ) |
| 66 |
65
|
zred |
|- ( j e. ( 0 ... ( i - 1 ) ) -> j e. RR ) |
| 67 |
66
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j e. RR ) |
| 68 |
50
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> i e. RR ) |
| 69 |
52
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> M e. RR ) |
| 70 |
|
peano2rem |
|- ( i e. RR -> ( i - 1 ) e. RR ) |
| 71 |
68 70
|
syl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> ( i - 1 ) e. RR ) |
| 72 |
|
elfzle2 |
|- ( j e. ( 0 ... ( i - 1 ) ) -> j <_ ( i - 1 ) ) |
| 73 |
72
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j <_ ( i - 1 ) ) |
| 74 |
68
|
ltm1d |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> ( i - 1 ) < i ) |
| 75 |
67 71 68 73 74
|
lelttrd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j < i ) |
| 76 |
56
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> i <_ M ) |
| 77 |
67 68 69 75 76
|
ltletrd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j < M ) |
| 78 |
65
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j e. ZZ ) |
| 79 |
|
0zd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> 0 e. ZZ ) |
| 80 |
41
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> M e. ZZ ) |
| 81 |
|
elfzo |
|- ( ( j e. ZZ /\ 0 e. ZZ /\ M e. ZZ ) -> ( j e. ( 0 ..^ M ) <-> ( 0 <_ j /\ j < M ) ) ) |
| 82 |
78 79 80 81
|
syl3anc |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> ( j e. ( 0 ..^ M ) <-> ( 0 <_ j /\ j < M ) ) ) |
| 83 |
64 77 82
|
mpbir2and |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j e. ( 0 ..^ M ) ) |
| 84 |
83
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j e. ( 0 ..^ M ) ) |
| 85 |
13
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 86 |
|
elfzofz |
|- ( j e. ( 0 ..^ M ) -> j e. ( 0 ... M ) ) |
| 87 |
86
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> j e. ( 0 ... M ) ) |
| 88 |
85 87
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` j ) e. RR ) |
| 89 |
|
fzofzp1 |
|- ( j e. ( 0 ..^ M ) -> ( j + 1 ) e. ( 0 ... M ) ) |
| 90 |
89
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( j + 1 ) e. ( 0 ... M ) ) |
| 91 |
85 90
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` ( j + 1 ) ) e. RR ) |
| 92 |
|
eleq1w |
|- ( i = j -> ( i e. ( 0 ..^ M ) <-> j e. ( 0 ..^ M ) ) ) |
| 93 |
92
|
anbi2d |
|- ( i = j -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ j e. ( 0 ..^ M ) ) ) ) |
| 94 |
|
fveq2 |
|- ( i = j -> ( Q ` i ) = ( Q ` j ) ) |
| 95 |
|
oveq1 |
|- ( i = j -> ( i + 1 ) = ( j + 1 ) ) |
| 96 |
95
|
fveq2d |
|- ( i = j -> ( Q ` ( i + 1 ) ) = ( Q ` ( j + 1 ) ) ) |
| 97 |
94 96
|
breq12d |
|- ( i = j -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` j ) < ( Q ` ( j + 1 ) ) ) ) |
| 98 |
93 97
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` j ) < ( Q ` ( j + 1 ) ) ) ) ) |
| 99 |
16
|
simprd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 100 |
99
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 101 |
98 100
|
chvarvv |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` j ) < ( Q ` ( j + 1 ) ) ) |
| 102 |
88 91 101
|
ltled |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` j ) <_ ( Q ` ( j + 1 ) ) ) |
| 103 |
62 84 102
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> ( Q ` j ) <_ ( Q ` ( j + 1 ) ) ) |
| 104 |
38 61 103
|
monoord |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
| 105 |
36 104
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> A <_ ( Q ` i ) ) |
| 106 |
|
elfzuz3 |
|- ( i e. ( 0 ... M ) -> M e. ( ZZ>= ` i ) ) |
| 107 |
106
|
adantl |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> M e. ( ZZ>= ` i ) ) |
| 108 |
13
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 109 |
|
fz0fzelfz0 |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... M ) ) -> j e. ( 0 ... M ) ) |
| 110 |
109
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... M ) ) -> j e. ( 0 ... M ) ) |
| 111 |
108 110
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... M ) ) -> ( Q ` j ) e. RR ) |
| 112 |
13
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> Q : ( 0 ... M ) --> RR ) |
| 113 |
|
0zd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 e. ZZ ) |
| 114 |
41
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> M e. ZZ ) |
| 115 |
|
elfzelz |
|- ( j e. ( i ... ( M - 1 ) ) -> j e. ZZ ) |
| 116 |
115
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> j e. ZZ ) |
| 117 |
|
0red |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 e. RR ) |
| 118 |
50
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... ( M - 1 ) ) ) -> i e. RR ) |
| 119 |
115
|
zred |
|- ( j e. ( i ... ( M - 1 ) ) -> j e. RR ) |
| 120 |
119
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... ( M - 1 ) ) ) -> j e. RR ) |
| 121 |
|
elfzle1 |
|- ( i e. ( 0 ... M ) -> 0 <_ i ) |
| 122 |
121
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 <_ i ) |
| 123 |
|
elfzle1 |
|- ( j e. ( i ... ( M - 1 ) ) -> i <_ j ) |
| 124 |
123
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... ( M - 1 ) ) ) -> i <_ j ) |
| 125 |
117 118 120 122 124
|
letrd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 <_ j ) |
| 126 |
125
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 <_ j ) |
| 127 |
119
|
adantl |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> j e. RR ) |
| 128 |
2
|
nnred |
|- ( ph -> M e. RR ) |
| 129 |
128
|
adantr |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> M e. RR ) |
| 130 |
|
1red |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> 1 e. RR ) |
| 131 |
129 130
|
resubcld |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> ( M - 1 ) e. RR ) |
| 132 |
|
elfzle2 |
|- ( j e. ( i ... ( M - 1 ) ) -> j <_ ( M - 1 ) ) |
| 133 |
132
|
adantl |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> j <_ ( M - 1 ) ) |
| 134 |
129
|
ltm1d |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> ( M - 1 ) < M ) |
| 135 |
127 131 129 133 134
|
lelttrd |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> j < M ) |
| 136 |
127 129 135
|
ltled |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> j <_ M ) |
| 137 |
136
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> j <_ M ) |
| 138 |
113 114 116 126 137
|
elfzd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> j e. ( 0 ... M ) ) |
| 139 |
112 138
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( Q ` j ) e. RR ) |
| 140 |
116
|
peano2zd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( j + 1 ) e. ZZ ) |
| 141 |
119
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> j e. RR ) |
| 142 |
|
1red |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> 1 e. RR ) |
| 143 |
|
0le1 |
|- 0 <_ 1 |
| 144 |
143
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 <_ 1 ) |
| 145 |
141 142 126 144
|
addge0d |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 <_ ( j + 1 ) ) |
| 146 |
127 131 130 133
|
leadd1dd |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> ( j + 1 ) <_ ( ( M - 1 ) + 1 ) ) |
| 147 |
2
|
nncnd |
|- ( ph -> M e. CC ) |
| 148 |
147
|
adantr |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> M e. CC ) |
| 149 |
|
1cnd |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> 1 e. CC ) |
| 150 |
148 149
|
npcand |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> ( ( M - 1 ) + 1 ) = M ) |
| 151 |
146 150
|
breqtrd |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> ( j + 1 ) <_ M ) |
| 152 |
151
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( j + 1 ) <_ M ) |
| 153 |
113 114 140 145 152
|
elfzd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( j + 1 ) e. ( 0 ... M ) ) |
| 154 |
112 153
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( Q ` ( j + 1 ) ) e. RR ) |
| 155 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ph ) |
| 156 |
135
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> j < M ) |
| 157 |
116 113 114 81
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( j e. ( 0 ..^ M ) <-> ( 0 <_ j /\ j < M ) ) ) |
| 158 |
126 156 157
|
mpbir2and |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> j e. ( 0 ..^ M ) ) |
| 159 |
155 158 101
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( Q ` j ) < ( Q ` ( j + 1 ) ) ) |
| 160 |
139 154 159
|
ltled |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( Q ` j ) <_ ( Q ` ( j + 1 ) ) ) |
| 161 |
107 111 160
|
monoord |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) <_ ( Q ` M ) ) |
| 162 |
28
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` M ) = B ) |
| 163 |
161 162
|
breqtrd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) <_ B ) |
| 164 |
27 33 34 105 163
|
eliccd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. ( A [,] B ) ) |
| 165 |
164
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ... M ) ( Q ` i ) e. ( A [,] B ) ) |
| 166 |
|
fnfvrnss |
|- ( ( Q Fn ( 0 ... M ) /\ A. i e. ( 0 ... M ) ( Q ` i ) e. ( A [,] B ) ) -> ran Q C_ ( A [,] B ) ) |
| 167 |
15 165 166
|
syl2anc |
|- ( ph -> ran Q C_ ( A [,] B ) ) |
| 168 |
|
df-f |
|- ( Q : ( 0 ... M ) --> ( A [,] B ) <-> ( Q Fn ( 0 ... M ) /\ ran Q C_ ( A [,] B ) ) ) |
| 169 |
15 167 168
|
sylanbrc |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |