Metamath Proof Explorer


Theorem fourierdlem15

Description: The range of the partition is between its starting point and its ending point. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem15.1 P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem15.2 φM
fourierdlem15.3 φQPM
Assertion fourierdlem15 φQ:0MAB

Proof

Step Hyp Ref Expression
1 fourierdlem15.1 P=mp0m|p0=Apm=Bi0..^mpi<pi+1
2 fourierdlem15.2 φM
3 fourierdlem15.3 φQPM
4 1 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
5 2 4 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
6 3 5 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
7 6 simpld φQ0M
8 reex V
9 8 a1i φV
10 ovex 0MV
11 10 a1i φ0MV
12 9 11 elmapd φQ0MQ:0M
13 7 12 mpbid φQ:0M
14 ffn Q:0MQFn0M
15 13 14 syl φQFn0M
16 6 simprd φQ0=AQM=Bi0..^MQi<Qi+1
17 16 simpld φQ0=AQM=B
18 17 simpld φQ0=A
19 nnnn0 MM0
20 nn0uz 0=0
21 19 20 eleqtrdi MM0
22 2 21 syl φM0
23 eluzfz1 M000M
24 22 23 syl φ00M
25 13 24 ffvelcdmd φQ0
26 18 25 eqeltrrd φA
27 26 adantr φi0MA
28 17 simprd φQM=B
29 eluzfz2 M0M0M
30 22 29 syl φM0M
31 13 30 ffvelcdmd φQM
32 28 31 eqeltrrd φB
33 32 adantr φi0MB
34 13 ffvelcdmda φi0MQi
35 18 eqcomd φA=Q0
36 35 adantr φi0MA=Q0
37 elfzuz i0Mi0
38 37 adantl φi0Mi0
39 13 ad2antrr φi0Mj0iQ:0M
40 0zd i0Mj0i0
41 elfzel2 i0MM
42 41 adantr i0Mj0iM
43 elfzelz j0ij
44 43 adantl i0Mj0ij
45 elfzle1 j0i0j
46 45 adantl i0Mj0i0j
47 43 zred j0ij
48 47 adantl i0Mj0ij
49 elfzelz i0Mi
50 49 zred i0Mi
51 50 adantr i0Mj0ii
52 41 zred i0MM
53 52 adantr i0Mj0iM
54 elfzle2 j0iji
55 54 adantl i0Mj0iji
56 elfzle2 i0MiM
57 56 adantr i0Mj0iiM
58 48 51 53 55 57 letrd i0Mj0ijM
59 40 42 44 46 58 elfzd i0Mj0ij0M
60 59 adantll φi0Mj0ij0M
61 39 60 ffvelcdmd φi0Mj0iQj
62 simpll φi0Mj0i1φ
63 elfzle1 j0i10j
64 63 adantl i0Mj0i10j
65 elfzelz j0i1j
66 65 zred j0i1j
67 66 adantl i0Mj0i1j
68 50 adantr i0Mj0i1i
69 52 adantr i0Mj0i1M
70 peano2rem ii1
71 68 70 syl i0Mj0i1i1
72 elfzle2 j0i1ji1
73 72 adantl i0Mj0i1ji1
74 68 ltm1d i0Mj0i1i1<i
75 67 71 68 73 74 lelttrd i0Mj0i1j<i
76 56 adantr i0Mj0i1iM
77 67 68 69 75 76 ltletrd i0Mj0i1j<M
78 65 adantl i0Mj0i1j
79 0zd i0Mj0i10
80 41 adantr i0Mj0i1M
81 elfzo j0Mj0..^M0jj<M
82 78 79 80 81 syl3anc i0Mj0i1j0..^M0jj<M
83 64 77 82 mpbir2and i0Mj0i1j0..^M
84 83 adantll φi0Mj0i1j0..^M
85 13 adantr φj0..^MQ:0M
86 elfzofz j0..^Mj0M
87 86 adantl φj0..^Mj0M
88 85 87 ffvelcdmd φj0..^MQj
89 fzofzp1 j0..^Mj+10M
90 89 adantl φj0..^Mj+10M
91 85 90 ffvelcdmd φj0..^MQj+1
92 eleq1w i=ji0..^Mj0..^M
93 92 anbi2d i=jφi0..^Mφj0..^M
94 fveq2 i=jQi=Qj
95 oveq1 i=ji+1=j+1
96 95 fveq2d i=jQi+1=Qj+1
97 94 96 breq12d i=jQi<Qi+1Qj<Qj+1
98 93 97 imbi12d i=jφi0..^MQi<Qi+1φj0..^MQj<Qj+1
99 16 simprd φi0..^MQi<Qi+1
100 99 r19.21bi φi0..^MQi<Qi+1
101 98 100 chvarvv φj0..^MQj<Qj+1
102 88 91 101 ltled φj0..^MQjQj+1
103 62 84 102 syl2anc φi0Mj0i1QjQj+1
104 38 61 103 monoord φi0MQ0Qi
105 36 104 eqbrtrd φi0MAQi
106 elfzuz3 i0MMi
107 106 adantl φi0MMi
108 13 ad2antrr φi0MjiMQ:0M
109 fz0fzelfz0 i0MjiMj0M
110 109 adantll φi0MjiMj0M
111 108 110 ffvelcdmd φi0MjiMQj
112 13 ad2antrr φi0MjiM1Q:0M
113 0zd φi0MjiM10
114 41 ad2antlr φi0MjiM1M
115 elfzelz jiM1j
116 115 adantl φi0MjiM1j
117 0red i0MjiM10
118 50 adantr i0MjiM1i
119 115 zred jiM1j
120 119 adantl i0MjiM1j
121 elfzle1 i0M0i
122 121 adantr i0MjiM10i
123 elfzle1 jiM1ij
124 123 adantl i0MjiM1ij
125 117 118 120 122 124 letrd i0MjiM10j
126 125 adantll φi0MjiM10j
127 119 adantl φjiM1j
128 2 nnred φM
129 128 adantr φjiM1M
130 1red φjiM11
131 129 130 resubcld φjiM1M1
132 elfzle2 jiM1jM1
133 132 adantl φjiM1jM1
134 129 ltm1d φjiM1M1<M
135 127 131 129 133 134 lelttrd φjiM1j<M
136 127 129 135 ltled φjiM1jM
137 136 adantlr φi0MjiM1jM
138 113 114 116 126 137 elfzd φi0MjiM1j0M
139 112 138 ffvelcdmd φi0MjiM1Qj
140 116 peano2zd φi0MjiM1j+1
141 119 adantl φi0MjiM1j
142 1red φi0MjiM11
143 0le1 01
144 143 a1i φi0MjiM101
145 141 142 126 144 addge0d φi0MjiM10j+1
146 127 131 130 133 leadd1dd φjiM1j+1M-1+1
147 2 nncnd φM
148 147 adantr φjiM1M
149 1cnd φjiM11
150 148 149 npcand φjiM1M-1+1=M
151 146 150 breqtrd φjiM1j+1M
152 151 adantlr φi0MjiM1j+1M
153 113 114 140 145 152 elfzd φi0MjiM1j+10M
154 112 153 ffvelcdmd φi0MjiM1Qj+1
155 simpll φi0MjiM1φ
156 135 adantlr φi0MjiM1j<M
157 116 113 114 81 syl3anc φi0MjiM1j0..^M0jj<M
158 126 156 157 mpbir2and φi0MjiM1j0..^M
159 155 158 101 syl2anc φi0MjiM1Qj<Qj+1
160 139 154 159 ltled φi0MjiM1QjQj+1
161 107 111 160 monoord φi0MQiQM
162 28 adantr φi0MQM=B
163 161 162 breqtrd φi0MQiB
164 27 33 34 105 163 eliccd φi0MQiAB
165 164 ralrimiva φi0MQiAB
166 fnfvrnss QFn0Mi0MQiABranQAB
167 15 165 166 syl2anc φranQAB
168 df-f Q:0MABQFn0MranQAB
169 15 167 168 sylanbrc φQ:0MAB