| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem15.1 |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 2 |
|
fourierdlem15.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 3 |
|
fourierdlem15.3 |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 4 |
1
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 6 |
3 5
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 7 |
6
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 8 |
|
reex |
⊢ ℝ ∈ V |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 10 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ V ) |
| 12 |
9 11
|
elmapd |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) |
| 13 |
7 12
|
mpbid |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 14 |
|
ffn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ → 𝑄 Fn ( 0 ... 𝑀 ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑄 Fn ( 0 ... 𝑀 ) ) |
| 16 |
6
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 17 |
16
|
simpld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) |
| 18 |
17
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
| 19 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 20 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 21 |
19 20
|
eleqtrdi |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 22 |
2 21
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 23 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
| 25 |
13 24
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
| 26 |
18 25
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝐴 ∈ ℝ ) |
| 28 |
17
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
| 29 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 30 |
22 29
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 31 |
13 30
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
| 32 |
28 31
|
eqeltrrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℝ ) |
| 34 |
13
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 35 |
18
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝑄 ‘ 0 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝐴 = ( 𝑄 ‘ 0 ) ) |
| 37 |
|
elfzuz |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 39 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 40 |
|
0zd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 0 ∈ ℤ ) |
| 41 |
|
elfzel2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℤ ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑀 ∈ ℤ ) |
| 43 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑖 ) → 𝑗 ∈ ℤ ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑗 ∈ ℤ ) |
| 45 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑖 ) → 0 ≤ 𝑗 ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 0 ≤ 𝑗 ) |
| 47 |
43
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... 𝑖 ) → 𝑗 ∈ ℝ ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑗 ∈ ℝ ) |
| 49 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℤ ) |
| 50 |
49
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℝ ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑖 ∈ ℝ ) |
| 52 |
41
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℝ ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑀 ∈ ℝ ) |
| 54 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑖 ) → 𝑗 ≤ 𝑖 ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑗 ≤ 𝑖 ) |
| 56 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ≤ 𝑀 ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑖 ≤ 𝑀 ) |
| 58 |
48 51 53 55 57
|
letrd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑗 ≤ 𝑀 ) |
| 59 |
40 42 44 46 58
|
elfzd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 60 |
59
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 61 |
39 60
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
| 62 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝜑 ) |
| 63 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) → 0 ≤ 𝑗 ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 0 ≤ 𝑗 ) |
| 65 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) → 𝑗 ∈ ℤ ) |
| 66 |
65
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) → 𝑗 ∈ ℝ ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
| 68 |
50
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
| 69 |
52
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 70 |
|
peano2rem |
⊢ ( 𝑖 ∈ ℝ → ( 𝑖 − 1 ) ∈ ℝ ) |
| 71 |
68 70
|
syl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝑖 − 1 ) ∈ ℝ ) |
| 72 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) → 𝑗 ≤ ( 𝑖 − 1 ) ) |
| 73 |
72
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 ≤ ( 𝑖 − 1 ) ) |
| 74 |
68
|
ltm1d |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝑖 − 1 ) < 𝑖 ) |
| 75 |
67 71 68 73 74
|
lelttrd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 < 𝑖 ) |
| 76 |
56
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑖 ≤ 𝑀 ) |
| 77 |
67 68 69 75 76
|
ltletrd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 < 𝑀 ) |
| 78 |
65
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 ∈ ℤ ) |
| 79 |
|
0zd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 0 ∈ ℤ ) |
| 80 |
41
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 81 |
|
elfzo |
⊢ ( ( 𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 < 𝑀 ) ) ) |
| 82 |
78 79 80 81
|
syl3anc |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 < 𝑀 ) ) ) |
| 83 |
64 77 82
|
mpbir2and |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
| 84 |
83
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
| 85 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 86 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 87 |
86
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 88 |
85 87
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
| 89 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 90 |
89
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 91 |
85 90
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 92 |
|
eleq1w |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 93 |
92
|
anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
| 94 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
| 95 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 + 1 ) = ( 𝑗 + 1 ) ) |
| 96 |
95
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
| 97 |
94 96
|
breq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
| 98 |
93 97
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 99 |
16
|
simprd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 100 |
99
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 101 |
98 100
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
| 102 |
88 91 101
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ≤ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
| 103 |
62 84 102
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝑄 ‘ 𝑗 ) ≤ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
| 104 |
38 61 103
|
monoord |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
| 105 |
36 104
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝐴 ≤ ( 𝑄 ‘ 𝑖 ) ) |
| 106 |
|
elfzuz3 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 108 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 109 |
|
fz0fzelfz0 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 110 |
109
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 111 |
108 110
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
| 112 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 113 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ∈ ℤ ) |
| 114 |
41
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 115 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) → 𝑗 ∈ ℤ ) |
| 116 |
115
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ∈ ℤ ) |
| 117 |
|
0red |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ∈ ℝ ) |
| 118 |
50
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
| 119 |
115
|
zred |
⊢ ( 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) → 𝑗 ∈ ℝ ) |
| 120 |
119
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
| 121 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 0 ≤ 𝑖 ) |
| 122 |
121
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ≤ 𝑖 ) |
| 123 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) → 𝑖 ≤ 𝑗 ) |
| 124 |
123
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑖 ≤ 𝑗 ) |
| 125 |
117 118 120 122 124
|
letrd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ≤ 𝑗 ) |
| 126 |
125
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ≤ 𝑗 ) |
| 127 |
119
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
| 128 |
2
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 129 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 130 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 1 ∈ ℝ ) |
| 131 |
129 130
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑀 − 1 ) ∈ ℝ ) |
| 132 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) → 𝑗 ≤ ( 𝑀 − 1 ) ) |
| 133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ≤ ( 𝑀 − 1 ) ) |
| 134 |
129
|
ltm1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑀 − 1 ) < 𝑀 ) |
| 135 |
127 131 129 133 134
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 < 𝑀 ) |
| 136 |
127 129 135
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ≤ 𝑀 ) |
| 137 |
136
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ≤ 𝑀 ) |
| 138 |
113 114 116 126 137
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 139 |
112 138
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
| 140 |
116
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℤ ) |
| 141 |
119
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
| 142 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 1 ∈ ℝ ) |
| 143 |
|
0le1 |
⊢ 0 ≤ 1 |
| 144 |
143
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ≤ 1 ) |
| 145 |
141 142 126 144
|
addge0d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ≤ ( 𝑗 + 1 ) ) |
| 146 |
127 131 130 133
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑗 + 1 ) ≤ ( ( 𝑀 − 1 ) + 1 ) ) |
| 147 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 148 |
147
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℂ ) |
| 149 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 1 ∈ ℂ ) |
| 150 |
148 149
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 151 |
146 150
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑗 + 1 ) ≤ 𝑀 ) |
| 152 |
151
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑗 + 1 ) ≤ 𝑀 ) |
| 153 |
113 114 140 145 152
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 154 |
112 153
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 155 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝜑 ) |
| 156 |
135
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 < 𝑀 ) |
| 157 |
116 113 114 81
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 < 𝑀 ) ) ) |
| 158 |
126 156 157
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
| 159 |
155 158 101
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
| 160 |
139 154 159
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑄 ‘ 𝑗 ) ≤ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
| 161 |
107 111 160
|
monoord |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
| 162 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
| 163 |
161 162
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ 𝐵 ) |
| 164 |
27 33 34 105 163
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 165 |
164
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 166 |
|
fnfvrnss |
⊢ ( ( 𝑄 Fn ( 0 ... 𝑀 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ran 𝑄 ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 167 |
15 165 166
|
syl2anc |
⊢ ( 𝜑 → ran 𝑄 ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 168 |
|
df-f |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑄 Fn ( 0 ... 𝑀 ) ∧ ran 𝑄 ⊆ ( 𝐴 [,] 𝐵 ) ) ) |
| 169 |
15 167 168
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |