| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem16.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
|
fourierdlem16.c |
⊢ 𝐶 = ( - π (,) π ) |
| 3 |
|
fourierdlem16.fibl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) ∈ 𝐿1 ) |
| 4 |
|
fourierdlem16.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
| 5 |
|
fourierdlem16.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 7 |
|
ioossre |
⊢ ( - π (,) π ) ⊆ ℝ |
| 8 |
|
id |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐶 ) |
| 9 |
8 2
|
eleqtrdi |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ ( - π (,) π ) ) |
| 10 |
7 9
|
sselid |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ ℝ ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ℝ ) |
| 12 |
6 11
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 13 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 14 |
|
nn0re |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℝ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐶 ) → 𝑛 ∈ ℝ ) |
| 16 |
10
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ℝ ) |
| 17 |
15 16
|
remulcld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑛 · 𝑥 ) ∈ ℝ ) |
| 18 |
17
|
recoscld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) |
| 19 |
18
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) |
| 20 |
13 19
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ ℝ ) |
| 21 |
|
ioombl |
⊢ ( - π (,) π ) ∈ dom vol |
| 22 |
2 21
|
eqeltri |
⊢ 𝐶 ∈ dom vol |
| 23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝐶 ∈ dom vol ) |
| 24 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) |
| 25 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 26 |
23 19 13 24 25
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∘f · ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 ↦ ( ( cos ‘ ( 𝑛 · 𝑥 ) ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 27 |
19
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℂ ) |
| 28 |
13
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 29 |
27 28
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( cos ‘ ( 𝑛 · 𝑥 ) ) · ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) |
| 30 |
29
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( ( cos ‘ ( 𝑛 · 𝑥 ) ) · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) ) |
| 31 |
26 30
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) = ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∘f · ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 32 |
|
coscn |
⊢ cos ∈ ( ℂ –cn→ ℂ ) |
| 33 |
32
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → cos ∈ ( ℂ –cn→ ℂ ) ) |
| 34 |
2 7
|
eqsstri |
⊢ 𝐶 ⊆ ℝ |
| 35 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 36 |
34 35
|
sstri |
⊢ 𝐶 ⊆ ℂ |
| 37 |
36
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 𝐶 ⊆ ℂ ) |
| 38 |
14
|
recnd |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) |
| 39 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 40 |
39
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → ℂ ⊆ ℂ ) |
| 41 |
37 38 40
|
constcncfg |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 ↦ 𝑛 ) ∈ ( 𝐶 –cn→ ℂ ) ) |
| 42 |
|
cncfmptid |
⊢ ( ( 𝐶 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ 𝐶 ↦ 𝑥 ) ∈ ( 𝐶 –cn→ ℂ ) ) |
| 43 |
36 39 42
|
mp2an |
⊢ ( 𝑥 ∈ 𝐶 ↦ 𝑥 ) ∈ ( 𝐶 –cn→ ℂ ) |
| 44 |
43
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 ↦ 𝑥 ) ∈ ( 𝐶 –cn→ ℂ ) ) |
| 45 |
41 44
|
mulcncf |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 ↦ ( 𝑛 · 𝑥 ) ) ∈ ( 𝐶 –cn→ ℂ ) ) |
| 46 |
33 45
|
cncfmpt1f |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ ( 𝐶 –cn→ ℂ ) ) |
| 47 |
|
cnmbf |
⊢ ( ( 𝐶 ∈ dom vol ∧ ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ ( 𝐶 –cn→ ℂ ) ) → ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ MblFn ) |
| 48 |
22 46 47
|
sylancr |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ MblFn ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ MblFn ) |
| 50 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 51 |
50
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ 𝐶 ) ) |
| 52 |
|
resmpt |
⊢ ( 𝐶 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 53 |
34 52
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 54 |
51 53
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ↾ 𝐶 ) ) |
| 55 |
54 3
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 57 |
|
1re |
⊢ 1 ∈ ℝ |
| 58 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) → 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) |
| 59 |
|
nfv |
⊢ Ⅎ 𝑥 𝑛 ∈ ℕ0 |
| 60 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) |
| 61 |
60
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) |
| 62 |
61
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) |
| 63 |
59 62
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) |
| 64 |
18
|
ex |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 → ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) → ( 𝑥 ∈ 𝐶 → ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) ) |
| 66 |
63 65
|
ralrimi |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝐶 ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) |
| 67 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐶 ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ → dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) = 𝐶 ) |
| 68 |
66 67
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) → dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) = 𝐶 ) |
| 69 |
58 68
|
eleqtrd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) → 𝑦 ∈ 𝐶 ) |
| 70 |
|
eqidd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) |
| 71 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 · 𝑥 ) = ( 𝑛 · 𝑦 ) ) |
| 72 |
71
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( cos ‘ ( 𝑛 · 𝑥 ) ) = ( cos ‘ ( 𝑛 · 𝑦 ) ) ) |
| 73 |
72
|
adantl |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 = 𝑦 ) → ( cos ‘ ( 𝑛 · 𝑥 ) ) = ( cos ‘ ( 𝑛 · 𝑦 ) ) ) |
| 74 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ∈ 𝐶 ) |
| 75 |
14
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → 𝑛 ∈ ℝ ) |
| 76 |
34 74
|
sselid |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ∈ ℝ ) |
| 77 |
75 76
|
remulcld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑛 · 𝑦 ) ∈ ℝ ) |
| 78 |
77
|
recoscld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( cos ‘ ( 𝑛 · 𝑦 ) ) ∈ ℝ ) |
| 79 |
70 73 74 78
|
fvmptd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) = ( cos ‘ ( 𝑛 · 𝑦 ) ) ) |
| 80 |
79
|
fveq2d |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) = ( abs ‘ ( cos ‘ ( 𝑛 · 𝑦 ) ) ) ) |
| 81 |
|
abscosbd |
⊢ ( ( 𝑛 · 𝑦 ) ∈ ℝ → ( abs ‘ ( cos ‘ ( 𝑛 · 𝑦 ) ) ) ≤ 1 ) |
| 82 |
77 81
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( abs ‘ ( cos ‘ ( 𝑛 · 𝑦 ) ) ) ≤ 1 ) |
| 83 |
80 82
|
eqbrtrd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) |
| 84 |
69 83
|
syldan |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) → ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) |
| 85 |
84
|
ralrimiva |
⊢ ( 𝑛 ∈ ℕ0 → ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) |
| 86 |
|
breq2 |
⊢ ( 𝑏 = 1 → ( ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ↔ ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) ) |
| 87 |
86
|
ralbidv |
⊢ ( 𝑏 = 1 → ( ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ↔ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) ) |
| 88 |
87
|
rspcev |
⊢ ( ( 1 ∈ ℝ ∧ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ) |
| 89 |
57 85 88
|
sylancr |
⊢ ( 𝑛 ∈ ℕ0 → ∃ 𝑏 ∈ ℝ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ) |
| 90 |
89
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ) |
| 91 |
|
bddmulibl |
⊢ ( ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ∧ ∃ 𝑏 ∈ ℝ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ) → ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∘f · ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |
| 92 |
49 56 90 91
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∘f · ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |
| 93 |
31 92
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
| 94 |
20 93
|
itgrecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) |
| 95 |
|
pire |
⊢ π ∈ ℝ |
| 96 |
95
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → π ∈ ℝ ) |
| 97 |
|
0re |
⊢ 0 ∈ ℝ |
| 98 |
|
pipos |
⊢ 0 < π |
| 99 |
97 98
|
gtneii |
⊢ π ≠ 0 |
| 100 |
99
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → π ≠ 0 ) |
| 101 |
94 96 100
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ∈ ℝ ) |
| 102 |
101 4
|
fmptd |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℝ ) |
| 103 |
102 5
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑁 ) ∈ ℝ ) |
| 104 |
5
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) ) |
| 105 |
|
eleq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) |
| 106 |
105
|
anbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ↔ ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) ) ) |
| 107 |
|
simpl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 ∈ 𝐶 ) → 𝑛 = 𝑁 ) |
| 108 |
107
|
oveq1d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑛 · 𝑥 ) = ( 𝑁 · 𝑥 ) ) |
| 109 |
108
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( 𝑛 · 𝑥 ) ) = ( cos ‘ ( 𝑁 · 𝑥 ) ) ) |
| 110 |
109
|
oveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) |
| 111 |
110
|
itgeq2dv |
⊢ ( 𝑛 = 𝑁 → ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 = ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) |
| 112 |
111
|
eleq1d |
⊢ ( 𝑛 = 𝑁 → ( ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ↔ ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) ) |
| 113 |
106 112
|
imbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) ) ) |
| 114 |
113 94
|
vtoclg |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) ) |
| 115 |
5 104 114
|
sylc |
⊢ ( 𝜑 → ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) |
| 116 |
103 55 115
|
jca31 |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝑁 ) ∈ ℝ ∧ ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) ∧ ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) ) |