Metamath Proof Explorer


Theorem fz0fzelfz0

Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018)

Ref Expression
Assertion fz0fzelfz0 N 0 R M N R M 0 R

Proof

Step Hyp Ref Expression
1 elfz2nn0 N 0 R N 0 R 0 N R
2 elfz2 M N R N R M N M M R
3 simplr N 0 M N M M
4 0red N 0 M 0
5 nn0re N 0 N
6 5 adantr N 0 M N
7 zre M M
8 7 adantl N 0 M M
9 4 6 8 3jca N 0 M 0 N M
10 9 adantr N 0 M N M 0 N M
11 nn0ge0 N 0 0 N
12 11 adantr N 0 M 0 N
13 12 anim1i N 0 M N M 0 N N M
14 letr 0 N M 0 N N M 0 M
15 10 13 14 sylc N 0 M N M 0 M
16 elnn0z M 0 M 0 M
17 3 15 16 sylanbrc N 0 M N M M 0
18 17 exp31 N 0 M N M M 0
19 18 com23 N 0 N M M M 0
20 19 3ad2ant1 N 0 R 0 N R N M M M 0
21 20 com13 M N M N 0 R 0 N R M 0
22 21 adantrd M N M M R N 0 R 0 N R M 0
23 22 3ad2ant3 N R M N M M R N 0 R 0 N R M 0
24 23 imp N R M N M M R N 0 R 0 N R M 0
25 24 imp N R M N M M R N 0 R 0 N R M 0
26 simpr2 N R M N M M R N 0 R 0 N R R 0
27 simplrr N R M N M M R N 0 R 0 N R M R
28 25 26 27 3jca N R M N M M R N 0 R 0 N R M 0 R 0 M R
29 28 ex N R M N M M R N 0 R 0 N R M 0 R 0 M R
30 2 29 sylbi M N R N 0 R 0 N R M 0 R 0 M R
31 30 com12 N 0 R 0 N R M N R M 0 R 0 M R
32 1 31 sylbi N 0 R M N R M 0 R 0 M R
33 32 imp N 0 R M N R M 0 R 0 M R
34 elfz2nn0 M 0 R M 0 R 0 M R
35 33 34 sylibr N 0 R M N R M 0 R