| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartgtprec.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 |  | iccpart |  |-  ( M e. NN -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) | 
						
							| 4 | 1 3 | syl |  |-  ( ph -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) | 
						
							| 5 |  | elmapfn |  |-  ( P e. ( RR* ^m ( 0 ... M ) ) -> P Fn ( 0 ... M ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) -> P Fn ( 0 ... M ) ) | 
						
							| 7 | 4 6 | biimtrdi |  |-  ( ph -> ( P e. ( RePart ` M ) -> P Fn ( 0 ... M ) ) ) | 
						
							| 8 | 2 7 | mpd |  |-  ( ph -> P Fn ( 0 ... M ) ) | 
						
							| 9 |  | fvelrnb |  |-  ( P Fn ( 0 ... M ) -> ( p e. ran P <-> E. i e. ( 0 ... M ) ( P ` i ) = p ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> ( p e. ran P <-> E. i e. ( 0 ... M ) ( P ` i ) = p ) ) | 
						
							| 11 | 1 | adantr |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> M e. NN ) | 
						
							| 12 | 2 | adantr |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> P e. ( RePart ` M ) ) | 
						
							| 13 |  | simpr |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> i e. ( 0 ... M ) ) | 
						
							| 14 | 11 12 13 | iccpartxr |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( P ` i ) e. RR* ) | 
						
							| 15 | 1 2 | iccpartgel |  |-  ( ph -> A. k e. ( 0 ... M ) ( P ` 0 ) <_ ( P ` k ) ) | 
						
							| 16 |  | fveq2 |  |-  ( k = i -> ( P ` k ) = ( P ` i ) ) | 
						
							| 17 | 16 | breq2d |  |-  ( k = i -> ( ( P ` 0 ) <_ ( P ` k ) <-> ( P ` 0 ) <_ ( P ` i ) ) ) | 
						
							| 18 | 17 | rspcva |  |-  ( ( i e. ( 0 ... M ) /\ A. k e. ( 0 ... M ) ( P ` 0 ) <_ ( P ` k ) ) -> ( P ` 0 ) <_ ( P ` i ) ) | 
						
							| 19 | 18 | expcom |  |-  ( A. k e. ( 0 ... M ) ( P ` 0 ) <_ ( P ` k ) -> ( i e. ( 0 ... M ) -> ( P ` 0 ) <_ ( P ` i ) ) ) | 
						
							| 20 | 15 19 | syl |  |-  ( ph -> ( i e. ( 0 ... M ) -> ( P ` 0 ) <_ ( P ` i ) ) ) | 
						
							| 21 | 20 | imp |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( P ` 0 ) <_ ( P ` i ) ) | 
						
							| 22 | 1 2 | iccpartleu |  |-  ( ph -> A. k e. ( 0 ... M ) ( P ` k ) <_ ( P ` M ) ) | 
						
							| 23 | 16 | breq1d |  |-  ( k = i -> ( ( P ` k ) <_ ( P ` M ) <-> ( P ` i ) <_ ( P ` M ) ) ) | 
						
							| 24 | 23 | rspcva |  |-  ( ( i e. ( 0 ... M ) /\ A. k e. ( 0 ... M ) ( P ` k ) <_ ( P ` M ) ) -> ( P ` i ) <_ ( P ` M ) ) | 
						
							| 25 | 24 | expcom |  |-  ( A. k e. ( 0 ... M ) ( P ` k ) <_ ( P ` M ) -> ( i e. ( 0 ... M ) -> ( P ` i ) <_ ( P ` M ) ) ) | 
						
							| 26 | 22 25 | syl |  |-  ( ph -> ( i e. ( 0 ... M ) -> ( P ` i ) <_ ( P ` M ) ) ) | 
						
							| 27 | 26 | imp |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( P ` i ) <_ ( P ` M ) ) | 
						
							| 28 |  | nnnn0 |  |-  ( M e. NN -> M e. NN0 ) | 
						
							| 29 |  | 0elfz |  |-  ( M e. NN0 -> 0 e. ( 0 ... M ) ) | 
						
							| 30 | 1 28 29 | 3syl |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 31 | 1 2 30 | iccpartxr |  |-  ( ph -> ( P ` 0 ) e. RR* ) | 
						
							| 32 |  | nn0fz0 |  |-  ( M e. NN0 <-> M e. ( 0 ... M ) ) | 
						
							| 33 | 28 32 | sylib |  |-  ( M e. NN -> M e. ( 0 ... M ) ) | 
						
							| 34 | 1 33 | syl |  |-  ( ph -> M e. ( 0 ... M ) ) | 
						
							| 35 | 1 2 34 | iccpartxr |  |-  ( ph -> ( P ` M ) e. RR* ) | 
						
							| 36 | 31 35 | jca |  |-  ( ph -> ( ( P ` 0 ) e. RR* /\ ( P ` M ) e. RR* ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( P ` 0 ) e. RR* /\ ( P ` M ) e. RR* ) ) | 
						
							| 38 |  | elicc1 |  |-  ( ( ( P ` 0 ) e. RR* /\ ( P ` M ) e. RR* ) -> ( ( P ` i ) e. ( ( P ` 0 ) [,] ( P ` M ) ) <-> ( ( P ` i ) e. RR* /\ ( P ` 0 ) <_ ( P ` i ) /\ ( P ` i ) <_ ( P ` M ) ) ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( P ` i ) e. ( ( P ` 0 ) [,] ( P ` M ) ) <-> ( ( P ` i ) e. RR* /\ ( P ` 0 ) <_ ( P ` i ) /\ ( P ` i ) <_ ( P ` M ) ) ) ) | 
						
							| 40 | 14 21 27 39 | mpbir3and |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( P ` i ) e. ( ( P ` 0 ) [,] ( P ` M ) ) ) | 
						
							| 41 |  | eleq1 |  |-  ( ( P ` i ) = p -> ( ( P ` i ) e. ( ( P ` 0 ) [,] ( P ` M ) ) <-> p e. ( ( P ` 0 ) [,] ( P ` M ) ) ) ) | 
						
							| 42 | 40 41 | syl5ibcom |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( P ` i ) = p -> p e. ( ( P ` 0 ) [,] ( P ` M ) ) ) ) | 
						
							| 43 | 42 | rexlimdva |  |-  ( ph -> ( E. i e. ( 0 ... M ) ( P ` i ) = p -> p e. ( ( P ` 0 ) [,] ( P ` M ) ) ) ) | 
						
							| 44 | 10 43 | sylbid |  |-  ( ph -> ( p e. ran P -> p e. ( ( P ` 0 ) [,] ( P ` M ) ) ) ) | 
						
							| 45 | 44 | ssrdv |  |-  ( ph -> ran P C_ ( ( P ` 0 ) [,] ( P ` M ) ) ) |