| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartgtprec.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 | 1 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 4 |  | elnn0uz |  |-  ( M e. NN0 <-> M e. ( ZZ>= ` 0 ) ) | 
						
							| 5 | 3 4 | sylib |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 6 |  | fzpred |  |-  ( M e. ( ZZ>= ` 0 ) -> ( 0 ... M ) = ( { 0 } u. ( ( 0 + 1 ) ... M ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ph -> ( 0 ... M ) = ( { 0 } u. ( ( 0 + 1 ) ... M ) ) ) | 
						
							| 8 | 7 | eleq2d |  |-  ( ph -> ( i e. ( 0 ... M ) <-> i e. ( { 0 } u. ( ( 0 + 1 ) ... M ) ) ) ) | 
						
							| 9 |  | elun |  |-  ( i e. ( { 0 } u. ( ( 0 + 1 ) ... M ) ) <-> ( i e. { 0 } \/ i e. ( ( 0 + 1 ) ... M ) ) ) | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( i e. ( { 0 } u. ( ( 0 + 1 ) ... M ) ) <-> ( i e. { 0 } \/ i e. ( ( 0 + 1 ) ... M ) ) ) ) | 
						
							| 11 |  | velsn |  |-  ( i e. { 0 } <-> i = 0 ) | 
						
							| 12 | 11 | a1i |  |-  ( ph -> ( i e. { 0 } <-> i = 0 ) ) | 
						
							| 13 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 14 | 13 | a1i |  |-  ( ph -> ( 0 + 1 ) = 1 ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ph -> ( ( 0 + 1 ) ... M ) = ( 1 ... M ) ) | 
						
							| 16 | 15 | eleq2d |  |-  ( ph -> ( i e. ( ( 0 + 1 ) ... M ) <-> i e. ( 1 ... M ) ) ) | 
						
							| 17 | 12 16 | orbi12d |  |-  ( ph -> ( ( i e. { 0 } \/ i e. ( ( 0 + 1 ) ... M ) ) <-> ( i = 0 \/ i e. ( 1 ... M ) ) ) ) | 
						
							| 18 | 8 10 17 | 3bitrd |  |-  ( ph -> ( i e. ( 0 ... M ) <-> ( i = 0 \/ i e. ( 1 ... M ) ) ) ) | 
						
							| 19 |  | 0elfz |  |-  ( M e. NN0 -> 0 e. ( 0 ... M ) ) | 
						
							| 20 | 3 19 | syl |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 21 | 1 2 20 | iccpartxr |  |-  ( ph -> ( P ` 0 ) e. RR* ) | 
						
							| 22 | 21 | xrleidd |  |-  ( ph -> ( P ` 0 ) <_ ( P ` 0 ) ) | 
						
							| 23 |  | fveq2 |  |-  ( i = 0 -> ( P ` i ) = ( P ` 0 ) ) | 
						
							| 24 | 23 | breq2d |  |-  ( i = 0 -> ( ( P ` 0 ) <_ ( P ` i ) <-> ( P ` 0 ) <_ ( P ` 0 ) ) ) | 
						
							| 25 | 22 24 | imbitrrid |  |-  ( i = 0 -> ( ph -> ( P ` 0 ) <_ ( P ` i ) ) ) | 
						
							| 26 | 21 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( P ` 0 ) e. RR* ) | 
						
							| 27 | 1 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> M e. NN ) | 
						
							| 28 | 2 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> P e. ( RePart ` M ) ) | 
						
							| 29 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 30 | 29 | a1i |  |-  ( ph -> 1 e. NN0 ) | 
						
							| 31 |  | elnn0uz |  |-  ( 1 e. NN0 <-> 1 e. ( ZZ>= ` 0 ) ) | 
						
							| 32 | 30 31 | sylib |  |-  ( ph -> 1 e. ( ZZ>= ` 0 ) ) | 
						
							| 33 |  | fzss1 |  |-  ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ... M ) C_ ( 0 ... M ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ph -> ( 1 ... M ) C_ ( 0 ... M ) ) | 
						
							| 35 | 34 | sselda |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> i e. ( 0 ... M ) ) | 
						
							| 36 | 27 28 35 | iccpartxr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( P ` i ) e. RR* ) | 
						
							| 37 | 1 2 | iccpartgtl |  |-  ( ph -> A. k e. ( 1 ... M ) ( P ` 0 ) < ( P ` k ) ) | 
						
							| 38 |  | fveq2 |  |-  ( k = i -> ( P ` k ) = ( P ` i ) ) | 
						
							| 39 | 38 | breq2d |  |-  ( k = i -> ( ( P ` 0 ) < ( P ` k ) <-> ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 40 | 39 | rspccv |  |-  ( A. k e. ( 1 ... M ) ( P ` 0 ) < ( P ` k ) -> ( i e. ( 1 ... M ) -> ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 41 | 37 40 | syl |  |-  ( ph -> ( i e. ( 1 ... M ) -> ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 42 | 41 | imp |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( P ` 0 ) < ( P ` i ) ) | 
						
							| 43 | 26 36 42 | xrltled |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( P ` 0 ) <_ ( P ` i ) ) | 
						
							| 44 | 43 | expcom |  |-  ( i e. ( 1 ... M ) -> ( ph -> ( P ` 0 ) <_ ( P ` i ) ) ) | 
						
							| 45 | 25 44 | jaoi |  |-  ( ( i = 0 \/ i e. ( 1 ... M ) ) -> ( ph -> ( P ` 0 ) <_ ( P ` i ) ) ) | 
						
							| 46 | 45 | com12 |  |-  ( ph -> ( ( i = 0 \/ i e. ( 1 ... M ) ) -> ( P ` 0 ) <_ ( P ` i ) ) ) | 
						
							| 47 | 18 46 | sylbid |  |-  ( ph -> ( i e. ( 0 ... M ) -> ( P ` 0 ) <_ ( P ` i ) ) ) | 
						
							| 48 | 47 | ralrimiv |  |-  ( ph -> A. i e. ( 0 ... M ) ( P ` 0 ) <_ ( P ` i ) ) |