| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartgtprec.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 |  | elnnuz |  |-  ( M e. NN <-> M e. ( ZZ>= ` 1 ) ) | 
						
							| 4 | 1 3 | sylib |  |-  ( ph -> M e. ( ZZ>= ` 1 ) ) | 
						
							| 5 |  | fzisfzounsn |  |-  ( M e. ( ZZ>= ` 1 ) -> ( 1 ... M ) = ( ( 1 ..^ M ) u. { M } ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> ( 1 ... M ) = ( ( 1 ..^ M ) u. { M } ) ) | 
						
							| 7 | 6 | eleq2d |  |-  ( ph -> ( i e. ( 1 ... M ) <-> i e. ( ( 1 ..^ M ) u. { M } ) ) ) | 
						
							| 8 |  | elun |  |-  ( i e. ( ( 1 ..^ M ) u. { M } ) <-> ( i e. ( 1 ..^ M ) \/ i e. { M } ) ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( i e. ( ( 1 ..^ M ) u. { M } ) <-> ( i e. ( 1 ..^ M ) \/ i e. { M } ) ) ) | 
						
							| 10 |  | velsn |  |-  ( i e. { M } <-> i = M ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( i e. { M } <-> i = M ) ) | 
						
							| 12 | 11 | orbi2d |  |-  ( ph -> ( ( i e. ( 1 ..^ M ) \/ i e. { M } ) <-> ( i e. ( 1 ..^ M ) \/ i = M ) ) ) | 
						
							| 13 | 7 9 12 | 3bitrd |  |-  ( ph -> ( i e. ( 1 ... M ) <-> ( i e. ( 1 ..^ M ) \/ i = M ) ) ) | 
						
							| 14 |  | fveq2 |  |-  ( k = i -> ( P ` k ) = ( P ` i ) ) | 
						
							| 15 | 14 | breq2d |  |-  ( k = i -> ( ( P ` 0 ) < ( P ` k ) <-> ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 16 | 15 | rspccv |  |-  ( A. k e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` k ) -> ( i e. ( 1 ..^ M ) -> ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 17 | 1 2 | iccpartigtl |  |-  ( ph -> A. k e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` k ) ) | 
						
							| 18 | 16 17 | syl11 |  |-  ( i e. ( 1 ..^ M ) -> ( ph -> ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 19 | 1 2 | iccpartlt |  |-  ( ph -> ( P ` 0 ) < ( P ` M ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( i = M /\ ph ) -> ( P ` 0 ) < ( P ` M ) ) | 
						
							| 21 |  | fveq2 |  |-  ( i = M -> ( P ` i ) = ( P ` M ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( i = M /\ ph ) -> ( P ` i ) = ( P ` M ) ) | 
						
							| 23 | 20 22 | breqtrrd |  |-  ( ( i = M /\ ph ) -> ( P ` 0 ) < ( P ` i ) ) | 
						
							| 24 | 23 | ex |  |-  ( i = M -> ( ph -> ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 25 | 18 24 | jaoi |  |-  ( ( i e. ( 1 ..^ M ) \/ i = M ) -> ( ph -> ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 26 | 25 | com12 |  |-  ( ph -> ( ( i e. ( 1 ..^ M ) \/ i = M ) -> ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 27 | 13 26 | sylbid |  |-  ( ph -> ( i e. ( 1 ... M ) -> ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 28 | 27 | ralrimiv |  |-  ( ph -> A. i e. ( 1 ... M ) ( P ` 0 ) < ( P ` i ) ) |