| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartgtprec.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 | 1 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 4 |  | elnn0uz |  |-  ( M e. NN0 <-> M e. ( ZZ>= ` 0 ) ) | 
						
							| 5 | 3 4 | sylib |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 6 |  | fzpred |  |-  ( M e. ( ZZ>= ` 0 ) -> ( 0 ... M ) = ( { 0 } u. ( ( 0 + 1 ) ... M ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ph -> ( 0 ... M ) = ( { 0 } u. ( ( 0 + 1 ) ... M ) ) ) | 
						
							| 8 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 9 | 8 | oveq1i |  |-  ( ( 0 + 1 ) ... M ) = ( 1 ... M ) | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( ( 0 + 1 ) ... M ) = ( 1 ... M ) ) | 
						
							| 11 | 10 | uneq2d |  |-  ( ph -> ( { 0 } u. ( ( 0 + 1 ) ... M ) ) = ( { 0 } u. ( 1 ... M ) ) ) | 
						
							| 12 | 7 11 | eqtrd |  |-  ( ph -> ( 0 ... M ) = ( { 0 } u. ( 1 ... M ) ) ) | 
						
							| 13 | 12 | eleq2d |  |-  ( ph -> ( i e. ( 0 ... M ) <-> i e. ( { 0 } u. ( 1 ... M ) ) ) ) | 
						
							| 14 |  | elun |  |-  ( i e. ( { 0 } u. ( 1 ... M ) ) <-> ( i e. { 0 } \/ i e. ( 1 ... M ) ) ) | 
						
							| 15 |  | velsn |  |-  ( i e. { 0 } <-> i = 0 ) | 
						
							| 16 | 15 | orbi1i |  |-  ( ( i e. { 0 } \/ i e. ( 1 ... M ) ) <-> ( i = 0 \/ i e. ( 1 ... M ) ) ) | 
						
							| 17 | 14 16 | bitri |  |-  ( i e. ( { 0 } u. ( 1 ... M ) ) <-> ( i = 0 \/ i e. ( 1 ... M ) ) ) | 
						
							| 18 |  | fzisfzounsn |  |-  ( M e. ( ZZ>= ` 0 ) -> ( 0 ... M ) = ( ( 0 ..^ M ) u. { M } ) ) | 
						
							| 19 | 5 18 | syl |  |-  ( ph -> ( 0 ... M ) = ( ( 0 ..^ M ) u. { M } ) ) | 
						
							| 20 | 19 | eleq2d |  |-  ( ph -> ( j e. ( 0 ... M ) <-> j e. ( ( 0 ..^ M ) u. { M } ) ) ) | 
						
							| 21 |  | elun |  |-  ( j e. ( ( 0 ..^ M ) u. { M } ) <-> ( j e. ( 0 ..^ M ) \/ j e. { M } ) ) | 
						
							| 22 |  | velsn |  |-  ( j e. { M } <-> j = M ) | 
						
							| 23 | 22 | orbi2i |  |-  ( ( j e. ( 0 ..^ M ) \/ j e. { M } ) <-> ( j e. ( 0 ..^ M ) \/ j = M ) ) | 
						
							| 24 | 21 23 | bitri |  |-  ( j e. ( ( 0 ..^ M ) u. { M } ) <-> ( j e. ( 0 ..^ M ) \/ j = M ) ) | 
						
							| 25 | 20 24 | bitrdi |  |-  ( ph -> ( j e. ( 0 ... M ) <-> ( j e. ( 0 ..^ M ) \/ j = M ) ) ) | 
						
							| 26 |  | simpl |  |-  ( ( j e. ( 0 ..^ M ) /\ 0 < j ) -> j e. ( 0 ..^ M ) ) | 
						
							| 27 |  | simpr |  |-  ( ( j e. ( 0 ..^ M ) /\ 0 < j ) -> 0 < j ) | 
						
							| 28 | 27 | gt0ne0d |  |-  ( ( j e. ( 0 ..^ M ) /\ 0 < j ) -> j =/= 0 ) | 
						
							| 29 |  | fzo1fzo0n0 |  |-  ( j e. ( 1 ..^ M ) <-> ( j e. ( 0 ..^ M ) /\ j =/= 0 ) ) | 
						
							| 30 | 26 28 29 | sylanbrc |  |-  ( ( j e. ( 0 ..^ M ) /\ 0 < j ) -> j e. ( 1 ..^ M ) ) | 
						
							| 31 | 1 2 | iccpartigtl |  |-  ( ph -> A. k e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` k ) ) | 
						
							| 32 |  | fveq2 |  |-  ( k = j -> ( P ` k ) = ( P ` j ) ) | 
						
							| 33 | 32 | breq2d |  |-  ( k = j -> ( ( P ` 0 ) < ( P ` k ) <-> ( P ` 0 ) < ( P ` j ) ) ) | 
						
							| 34 | 33 | rspcv |  |-  ( j e. ( 1 ..^ M ) -> ( A. k e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` k ) -> ( P ` 0 ) < ( P ` j ) ) ) | 
						
							| 35 | 30 31 34 | syl2imc |  |-  ( ph -> ( ( j e. ( 0 ..^ M ) /\ 0 < j ) -> ( P ` 0 ) < ( P ` j ) ) ) | 
						
							| 36 | 35 | expd |  |-  ( ph -> ( j e. ( 0 ..^ M ) -> ( 0 < j -> ( P ` 0 ) < ( P ` j ) ) ) ) | 
						
							| 37 | 36 | impcom |  |-  ( ( j e. ( 0 ..^ M ) /\ ph ) -> ( 0 < j -> ( P ` 0 ) < ( P ` j ) ) ) | 
						
							| 38 |  | breq1 |  |-  ( i = 0 -> ( i < j <-> 0 < j ) ) | 
						
							| 39 |  | fveq2 |  |-  ( i = 0 -> ( P ` i ) = ( P ` 0 ) ) | 
						
							| 40 | 39 | breq1d |  |-  ( i = 0 -> ( ( P ` i ) < ( P ` j ) <-> ( P ` 0 ) < ( P ` j ) ) ) | 
						
							| 41 | 38 40 | imbi12d |  |-  ( i = 0 -> ( ( i < j -> ( P ` i ) < ( P ` j ) ) <-> ( 0 < j -> ( P ` 0 ) < ( P ` j ) ) ) ) | 
						
							| 42 | 37 41 | imbitrrid |  |-  ( i = 0 -> ( ( j e. ( 0 ..^ M ) /\ ph ) -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) | 
						
							| 43 | 42 | expd |  |-  ( i = 0 -> ( j e. ( 0 ..^ M ) -> ( ph -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 44 | 43 | com12 |  |-  ( j e. ( 0 ..^ M ) -> ( i = 0 -> ( ph -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 45 | 1 2 | iccpartlt |  |-  ( ph -> ( P ` 0 ) < ( P ` M ) ) | 
						
							| 46 |  | fveq2 |  |-  ( j = M -> ( P ` j ) = ( P ` M ) ) | 
						
							| 47 | 39 46 | breqan12rd |  |-  ( ( j = M /\ i = 0 ) -> ( ( P ` i ) < ( P ` j ) <-> ( P ` 0 ) < ( P ` M ) ) ) | 
						
							| 48 | 45 47 | imbitrrid |  |-  ( ( j = M /\ i = 0 ) -> ( ph -> ( P ` i ) < ( P ` j ) ) ) | 
						
							| 49 | 48 | a1dd |  |-  ( ( j = M /\ i = 0 ) -> ( ph -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) | 
						
							| 50 | 49 | ex |  |-  ( j = M -> ( i = 0 -> ( ph -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 51 | 44 50 | jaoi |  |-  ( ( j e. ( 0 ..^ M ) \/ j = M ) -> ( i = 0 -> ( ph -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 52 | 51 | com12 |  |-  ( i = 0 -> ( ( j e. ( 0 ..^ M ) \/ j = M ) -> ( ph -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 53 |  | elfzelz |  |-  ( i e. ( 1 ... M ) -> i e. ZZ ) | 
						
							| 54 | 53 | ad3antlr |  |-  ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) -> i e. ZZ ) | 
						
							| 55 | 53 | peano2zd |  |-  ( i e. ( 1 ... M ) -> ( i + 1 ) e. ZZ ) | 
						
							| 56 | 55 | ad2antlr |  |-  ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) -> ( i + 1 ) e. ZZ ) | 
						
							| 57 |  | elfzoelz |  |-  ( j e. ( 0 ..^ M ) -> j e. ZZ ) | 
						
							| 58 | 57 | ad2antrr |  |-  ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) -> j e. ZZ ) | 
						
							| 59 |  | simpr |  |-  ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) -> i < j ) | 
						
							| 60 | 57 53 | anim12ci |  |-  ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) -> ( i e. ZZ /\ j e. ZZ ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) -> ( i e. ZZ /\ j e. ZZ ) ) | 
						
							| 62 |  | zltp1le |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> ( i < j <-> ( i + 1 ) <_ j ) ) | 
						
							| 63 | 61 62 | syl |  |-  ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) -> ( i < j <-> ( i + 1 ) <_ j ) ) | 
						
							| 64 | 59 63 | mpbid |  |-  ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) -> ( i + 1 ) <_ j ) | 
						
							| 65 | 56 58 64 | 3jca |  |-  ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) -> ( ( i + 1 ) e. ZZ /\ j e. ZZ /\ ( i + 1 ) <_ j ) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) -> ( ( i + 1 ) e. ZZ /\ j e. ZZ /\ ( i + 1 ) <_ j ) ) | 
						
							| 67 |  | eluz2 |  |-  ( j e. ( ZZ>= ` ( i + 1 ) ) <-> ( ( i + 1 ) e. ZZ /\ j e. ZZ /\ ( i + 1 ) <_ j ) ) | 
						
							| 68 | 66 67 | sylibr |  |-  ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) -> j e. ( ZZ>= ` ( i + 1 ) ) ) | 
						
							| 69 | 1 | ad2antlr |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> M e. NN ) | 
						
							| 70 | 2 | ad2antlr |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> P e. ( RePart ` M ) ) | 
						
							| 71 |  | 1zzd |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> 1 e. ZZ ) | 
						
							| 72 |  | elfzelz |  |-  ( k e. ( i ... j ) -> k e. ZZ ) | 
						
							| 73 | 72 | adantl |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> k e. ZZ ) | 
						
							| 74 |  | elfzle1 |  |-  ( i e. ( 1 ... M ) -> 1 <_ i ) | 
						
							| 75 |  | elfzle1 |  |-  ( k e. ( i ... j ) -> i <_ k ) | 
						
							| 76 |  | 1red |  |-  ( k e. ( i ... j ) -> 1 e. RR ) | 
						
							| 77 |  | elfzel1 |  |-  ( k e. ( i ... j ) -> i e. ZZ ) | 
						
							| 78 | 77 | zred |  |-  ( k e. ( i ... j ) -> i e. RR ) | 
						
							| 79 | 72 | zred |  |-  ( k e. ( i ... j ) -> k e. RR ) | 
						
							| 80 |  | letr |  |-  ( ( 1 e. RR /\ i e. RR /\ k e. RR ) -> ( ( 1 <_ i /\ i <_ k ) -> 1 <_ k ) ) | 
						
							| 81 | 76 78 79 80 | syl3anc |  |-  ( k e. ( i ... j ) -> ( ( 1 <_ i /\ i <_ k ) -> 1 <_ k ) ) | 
						
							| 82 | 75 81 | mpan2d |  |-  ( k e. ( i ... j ) -> ( 1 <_ i -> 1 <_ k ) ) | 
						
							| 83 | 74 82 | syl5com |  |-  ( i e. ( 1 ... M ) -> ( k e. ( i ... j ) -> 1 <_ k ) ) | 
						
							| 84 | 83 | ad3antlr |  |-  ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) -> ( k e. ( i ... j ) -> 1 <_ k ) ) | 
						
							| 85 | 84 | imp |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> 1 <_ k ) | 
						
							| 86 |  | eluz2 |  |-  ( k e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ k e. ZZ /\ 1 <_ k ) ) | 
						
							| 87 | 71 73 85 86 | syl3anbrc |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> k e. ( ZZ>= ` 1 ) ) | 
						
							| 88 |  | elfzel2 |  |-  ( i e. ( 1 ... M ) -> M e. ZZ ) | 
						
							| 89 | 88 | ad2antlr |  |-  ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) -> M e. ZZ ) | 
						
							| 90 | 89 | ad2antrr |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> M e. ZZ ) | 
						
							| 91 | 79 | adantl |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> k e. RR ) | 
						
							| 92 | 57 | zred |  |-  ( j e. ( 0 ..^ M ) -> j e. RR ) | 
						
							| 93 | 92 | ad4antr |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> j e. RR ) | 
						
							| 94 | 69 | nnred |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> M e. RR ) | 
						
							| 95 |  | elfzle2 |  |-  ( k e. ( i ... j ) -> k <_ j ) | 
						
							| 96 | 95 | adantl |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> k <_ j ) | 
						
							| 97 |  | elfzolt2 |  |-  ( j e. ( 0 ..^ M ) -> j < M ) | 
						
							| 98 | 97 | ad4antr |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> j < M ) | 
						
							| 99 | 91 93 94 96 98 | lelttrd |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> k < M ) | 
						
							| 100 |  | elfzo2 |  |-  ( k e. ( 1 ..^ M ) <-> ( k e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ k < M ) ) | 
						
							| 101 | 87 90 99 100 | syl3anbrc |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> k e. ( 1 ..^ M ) ) | 
						
							| 102 | 69 70 101 | iccpartipre |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... j ) ) -> ( P ` k ) e. RR ) | 
						
							| 103 | 1 | ad2antlr |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... ( j - 1 ) ) ) -> M e. NN ) | 
						
							| 104 | 2 | ad2antlr |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... ( j - 1 ) ) ) -> P e. ( RePart ` M ) ) | 
						
							| 105 | 57 | ad3antrrr |  |-  ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) -> j e. ZZ ) | 
						
							| 106 |  | fzoval |  |-  ( j e. ZZ -> ( i ..^ j ) = ( i ... ( j - 1 ) ) ) | 
						
							| 107 | 105 106 | syl |  |-  ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) -> ( i ..^ j ) = ( i ... ( j - 1 ) ) ) | 
						
							| 108 |  | elfzo0le |  |-  ( j e. ( 0 ..^ M ) -> j <_ M ) | 
						
							| 109 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 110 |  | 0red |  |-  ( i e. ( 1 ... M ) -> 0 e. RR ) | 
						
							| 111 |  | 1red |  |-  ( i e. ( 1 ... M ) -> 1 e. RR ) | 
						
							| 112 | 53 | zred |  |-  ( i e. ( 1 ... M ) -> i e. RR ) | 
						
							| 113 |  | letr |  |-  ( ( 0 e. RR /\ 1 e. RR /\ i e. RR ) -> ( ( 0 <_ 1 /\ 1 <_ i ) -> 0 <_ i ) ) | 
						
							| 114 | 110 111 112 113 | syl3anc |  |-  ( i e. ( 1 ... M ) -> ( ( 0 <_ 1 /\ 1 <_ i ) -> 0 <_ i ) ) | 
						
							| 115 | 109 114 | mpani |  |-  ( i e. ( 1 ... M ) -> ( 1 <_ i -> 0 <_ i ) ) | 
						
							| 116 | 74 115 | mpd |  |-  ( i e. ( 1 ... M ) -> 0 <_ i ) | 
						
							| 117 | 108 116 | anim12ci |  |-  ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) -> ( 0 <_ i /\ j <_ M ) ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) -> ( 0 <_ i /\ j <_ M ) ) | 
						
							| 119 |  | 0zd |  |-  ( j e. ( 0 ..^ M ) -> 0 e. ZZ ) | 
						
							| 120 |  | elfzoel2 |  |-  ( j e. ( 0 ..^ M ) -> M e. ZZ ) | 
						
							| 121 | 119 120 | jca |  |-  ( j e. ( 0 ..^ M ) -> ( 0 e. ZZ /\ M e. ZZ ) ) | 
						
							| 122 | 121 | ad2antrr |  |-  ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) -> ( 0 e. ZZ /\ M e. ZZ ) ) | 
						
							| 123 |  | ssfzo12bi |  |-  ( ( ( i e. ZZ /\ j e. ZZ ) /\ ( 0 e. ZZ /\ M e. ZZ ) /\ i < j ) -> ( ( i ..^ j ) C_ ( 0 ..^ M ) <-> ( 0 <_ i /\ j <_ M ) ) ) | 
						
							| 124 | 61 122 59 123 | syl3anc |  |-  ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) -> ( ( i ..^ j ) C_ ( 0 ..^ M ) <-> ( 0 <_ i /\ j <_ M ) ) ) | 
						
							| 125 | 118 124 | mpbird |  |-  ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) -> ( i ..^ j ) C_ ( 0 ..^ M ) ) | 
						
							| 126 | 125 | adantr |  |-  ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) -> ( i ..^ j ) C_ ( 0 ..^ M ) ) | 
						
							| 127 | 107 126 | eqsstrrd |  |-  ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) -> ( i ... ( j - 1 ) ) C_ ( 0 ..^ M ) ) | 
						
							| 128 | 127 | sselda |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... ( j - 1 ) ) ) -> k e. ( 0 ..^ M ) ) | 
						
							| 129 |  | iccpartimp |  |-  ( ( M e. NN /\ P e. ( RePart ` M ) /\ k e. ( 0 ..^ M ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` k ) < ( P ` ( k + 1 ) ) ) ) | 
						
							| 130 | 103 104 128 129 | syl3anc |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... ( j - 1 ) ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` k ) < ( P ` ( k + 1 ) ) ) ) | 
						
							| 131 | 130 | simprd |  |-  ( ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) /\ k e. ( i ... ( j - 1 ) ) ) -> ( P ` k ) < ( P ` ( k + 1 ) ) ) | 
						
							| 132 | 54 68 102 131 | smonoord |  |-  ( ( ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) /\ i < j ) /\ ph ) -> ( P ` i ) < ( P ` j ) ) | 
						
							| 133 | 132 | exp31 |  |-  ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) -> ( i < j -> ( ph -> ( P ` i ) < ( P ` j ) ) ) ) | 
						
							| 134 | 133 | com23 |  |-  ( ( j e. ( 0 ..^ M ) /\ i e. ( 1 ... M ) ) -> ( ph -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) | 
						
							| 135 | 134 | ex |  |-  ( j e. ( 0 ..^ M ) -> ( i e. ( 1 ... M ) -> ( ph -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 136 |  | elfzuz |  |-  ( i e. ( 1 ... M ) -> i e. ( ZZ>= ` 1 ) ) | 
						
							| 137 | 136 | adantr |  |-  ( ( i e. ( 1 ... M ) /\ i < M ) -> i e. ( ZZ>= ` 1 ) ) | 
						
							| 138 | 88 | adantr |  |-  ( ( i e. ( 1 ... M ) /\ i < M ) -> M e. ZZ ) | 
						
							| 139 |  | simpr |  |-  ( ( i e. ( 1 ... M ) /\ i < M ) -> i < M ) | 
						
							| 140 |  | elfzo2 |  |-  ( i e. ( 1 ..^ M ) <-> ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) ) | 
						
							| 141 | 137 138 139 140 | syl3anbrc |  |-  ( ( i e. ( 1 ... M ) /\ i < M ) -> i e. ( 1 ..^ M ) ) | 
						
							| 142 | 1 2 | iccpartiltu |  |-  ( ph -> A. k e. ( 1 ..^ M ) ( P ` k ) < ( P ` M ) ) | 
						
							| 143 |  | fveq2 |  |-  ( k = i -> ( P ` k ) = ( P ` i ) ) | 
						
							| 144 | 143 | breq1d |  |-  ( k = i -> ( ( P ` k ) < ( P ` M ) <-> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 145 | 144 | rspcv |  |-  ( i e. ( 1 ..^ M ) -> ( A. k e. ( 1 ..^ M ) ( P ` k ) < ( P ` M ) -> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 146 | 141 142 145 | syl2imc |  |-  ( ph -> ( ( i e. ( 1 ... M ) /\ i < M ) -> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 147 | 146 | expd |  |-  ( ph -> ( i e. ( 1 ... M ) -> ( i < M -> ( P ` i ) < ( P ` M ) ) ) ) | 
						
							| 148 | 147 | impcom |  |-  ( ( i e. ( 1 ... M ) /\ ph ) -> ( i < M -> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 149 | 148 | imp |  |-  ( ( ( i e. ( 1 ... M ) /\ ph ) /\ i < M ) -> ( P ` i ) < ( P ` M ) ) | 
						
							| 150 | 149 | a1i |  |-  ( j = M -> ( ( ( i e. ( 1 ... M ) /\ ph ) /\ i < M ) -> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 151 |  | breq2 |  |-  ( j = M -> ( i < j <-> i < M ) ) | 
						
							| 152 | 151 | anbi2d |  |-  ( j = M -> ( ( ( i e. ( 1 ... M ) /\ ph ) /\ i < j ) <-> ( ( i e. ( 1 ... M ) /\ ph ) /\ i < M ) ) ) | 
						
							| 153 | 46 | breq2d |  |-  ( j = M -> ( ( P ` i ) < ( P ` j ) <-> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 154 | 150 152 153 | 3imtr4d |  |-  ( j = M -> ( ( ( i e. ( 1 ... M ) /\ ph ) /\ i < j ) -> ( P ` i ) < ( P ` j ) ) ) | 
						
							| 155 | 154 | exp4c |  |-  ( j = M -> ( i e. ( 1 ... M ) -> ( ph -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 156 | 135 155 | jaoi |  |-  ( ( j e. ( 0 ..^ M ) \/ j = M ) -> ( i e. ( 1 ... M ) -> ( ph -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 157 | 156 | com12 |  |-  ( i e. ( 1 ... M ) -> ( ( j e. ( 0 ..^ M ) \/ j = M ) -> ( ph -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 158 | 52 157 | jaoi |  |-  ( ( i = 0 \/ i e. ( 1 ... M ) ) -> ( ( j e. ( 0 ..^ M ) \/ j = M ) -> ( ph -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 159 | 158 | com13 |  |-  ( ph -> ( ( j e. ( 0 ..^ M ) \/ j = M ) -> ( ( i = 0 \/ i e. ( 1 ... M ) ) -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 160 | 25 159 | sylbid |  |-  ( ph -> ( j e. ( 0 ... M ) -> ( ( i = 0 \/ i e. ( 1 ... M ) ) -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 161 | 160 | com3r |  |-  ( ( i = 0 \/ i e. ( 1 ... M ) ) -> ( ph -> ( j e. ( 0 ... M ) -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 162 | 17 161 | sylbi |  |-  ( i e. ( { 0 } u. ( 1 ... M ) ) -> ( ph -> ( j e. ( 0 ... M ) -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 163 | 162 | com12 |  |-  ( ph -> ( i e. ( { 0 } u. ( 1 ... M ) ) -> ( j e. ( 0 ... M ) -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 164 | 13 163 | sylbid |  |-  ( ph -> ( i e. ( 0 ... M ) -> ( j e. ( 0 ... M ) -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) ) ) | 
						
							| 165 | 164 | imp32 |  |-  ( ( ph /\ ( i e. ( 0 ... M ) /\ j e. ( 0 ... M ) ) ) -> ( i < j -> ( P ` i ) < ( P ` j ) ) ) | 
						
							| 166 | 165 | ralrimivva |  |-  ( ph -> A. i e. ( 0 ... M ) A. j e. ( 0 ... M ) ( i < j -> ( P ` i ) < ( P ` j ) ) ) |