| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartgtprec.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 |  | ral0 |  |-  A. i e. (/) ( P ` i ) < ( P ` 1 ) | 
						
							| 4 |  | oveq2 |  |-  ( M = 1 -> ( 1 ..^ M ) = ( 1 ..^ 1 ) ) | 
						
							| 5 |  | fzo0 |  |-  ( 1 ..^ 1 ) = (/) | 
						
							| 6 | 4 5 | eqtrdi |  |-  ( M = 1 -> ( 1 ..^ M ) = (/) ) | 
						
							| 7 |  | fveq2 |  |-  ( M = 1 -> ( P ` M ) = ( P ` 1 ) ) | 
						
							| 8 | 7 | breq2d |  |-  ( M = 1 -> ( ( P ` i ) < ( P ` M ) <-> ( P ` i ) < ( P ` 1 ) ) ) | 
						
							| 9 | 6 8 | raleqbidv |  |-  ( M = 1 -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) <-> A. i e. (/) ( P ` i ) < ( P ` 1 ) ) ) | 
						
							| 10 | 3 9 | mpbiri |  |-  ( M = 1 -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) | 
						
							| 11 | 10 | 2a1d |  |-  ( M = 1 -> ( ph -> ( M e. NN -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> M e. NN ) | 
						
							| 13 | 2 | adantr |  |-  ( ( ph /\ -. M = 1 ) -> P e. ( RePart ` M ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> P e. ( RePart ` M ) ) | 
						
							| 15 |  | nnnn0 |  |-  ( M e. NN -> M e. NN0 ) | 
						
							| 16 |  | nn0fz0 |  |-  ( M e. NN0 <-> M e. ( 0 ... M ) ) | 
						
							| 17 | 15 16 | sylib |  |-  ( M e. NN -> M e. ( 0 ... M ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> M e. ( 0 ... M ) ) | 
						
							| 19 | 12 14 18 | iccpartxr |  |-  ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> ( P ` M ) e. RR* ) | 
						
							| 20 |  | elxr |  |-  ( ( P ` M ) e. RR* <-> ( ( P ` M ) e. RR \/ ( P ` M ) = +oo \/ ( P ` M ) = -oo ) ) | 
						
							| 21 |  | elfzoelz |  |-  ( i e. ( 1 ..^ M ) -> i e. ZZ ) | 
						
							| 22 | 21 | ad2antll |  |-  ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> i e. ZZ ) | 
						
							| 23 |  | elfzo2 |  |-  ( i e. ( 1 ..^ M ) <-> ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) ) | 
						
							| 24 |  | eluzelz |  |-  ( i e. ( ZZ>= ` 1 ) -> i e. ZZ ) | 
						
							| 25 | 24 | peano2zd |  |-  ( i e. ( ZZ>= ` 1 ) -> ( i + 1 ) e. ZZ ) | 
						
							| 26 | 25 | 3ad2ant1 |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> ( i + 1 ) e. ZZ ) | 
						
							| 27 |  | simp2 |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> M e. ZZ ) | 
						
							| 28 |  | zltp1le |  |-  ( ( i e. ZZ /\ M e. ZZ ) -> ( i < M <-> ( i + 1 ) <_ M ) ) | 
						
							| 29 | 24 28 | sylan |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ ) -> ( i < M <-> ( i + 1 ) <_ M ) ) | 
						
							| 30 | 29 | biimp3a |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> ( i + 1 ) <_ M ) | 
						
							| 31 |  | eluz2 |  |-  ( M e. ( ZZ>= ` ( i + 1 ) ) <-> ( ( i + 1 ) e. ZZ /\ M e. ZZ /\ ( i + 1 ) <_ M ) ) | 
						
							| 32 | 26 27 30 31 | syl3anbrc |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> M e. ( ZZ>= ` ( i + 1 ) ) ) | 
						
							| 33 | 23 32 | sylbi |  |-  ( i e. ( 1 ..^ M ) -> M e. ( ZZ>= ` ( i + 1 ) ) ) | 
						
							| 34 | 33 | ad2antll |  |-  ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> M e. ( ZZ>= ` ( i + 1 ) ) ) | 
						
							| 35 |  | fveq2 |  |-  ( k = M -> ( P ` k ) = ( P ` M ) ) | 
						
							| 36 | 35 | eqcomd |  |-  ( k = M -> ( P ` M ) = ( P ` k ) ) | 
						
							| 37 | 36 | eleq1d |  |-  ( k = M -> ( ( P ` M ) e. RR <-> ( P ` k ) e. RR ) ) | 
						
							| 38 | 37 | biimpcd |  |-  ( ( P ` M ) e. RR -> ( k = M -> ( P ` k ) e. RR ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( k = M -> ( P ` k ) e. RR ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> ( k = M -> ( P ` k ) e. RR ) ) | 
						
							| 41 | 40 | com12 |  |-  ( k = M -> ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> ( P ` k ) e. RR ) ) | 
						
							| 42 | 12 | adantr |  |-  ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> M e. NN ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> M e. NN ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> M e. NN ) | 
						
							| 45 | 44 | adantl |  |-  ( ( -. k = M /\ ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) ) -> M e. NN ) | 
						
							| 46 | 14 | adantr |  |-  ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> P e. ( RePart ` M ) ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> P e. ( RePart ` M ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> P e. ( RePart ` M ) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( -. k = M /\ ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) ) -> P e. ( RePart ` M ) ) | 
						
							| 50 |  | elfz2 |  |-  ( k e. ( i ... M ) <-> ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) ) | 
						
							| 51 |  | eluz2 |  |-  ( i e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ i e. ZZ /\ 1 <_ i ) ) | 
						
							| 52 |  | 1red |  |-  ( ( i e. ZZ /\ k e. ZZ ) -> 1 e. RR ) | 
						
							| 53 |  | zre |  |-  ( i e. ZZ -> i e. RR ) | 
						
							| 54 | 53 | adantr |  |-  ( ( i e. ZZ /\ k e. ZZ ) -> i e. RR ) | 
						
							| 55 |  | zre |  |-  ( k e. ZZ -> k e. RR ) | 
						
							| 56 | 55 | adantl |  |-  ( ( i e. ZZ /\ k e. ZZ ) -> k e. RR ) | 
						
							| 57 |  | letr |  |-  ( ( 1 e. RR /\ i e. RR /\ k e. RR ) -> ( ( 1 <_ i /\ i <_ k ) -> 1 <_ k ) ) | 
						
							| 58 | 52 54 56 57 | syl3anc |  |-  ( ( i e. ZZ /\ k e. ZZ ) -> ( ( 1 <_ i /\ i <_ k ) -> 1 <_ k ) ) | 
						
							| 59 | 58 | expcomd |  |-  ( ( i e. ZZ /\ k e. ZZ ) -> ( i <_ k -> ( 1 <_ i -> 1 <_ k ) ) ) | 
						
							| 60 | 59 | adantrd |  |-  ( ( i e. ZZ /\ k e. ZZ ) -> ( ( i <_ k /\ k <_ M ) -> ( 1 <_ i -> 1 <_ k ) ) ) | 
						
							| 61 | 60 | 3adant2 |  |-  ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( ( i <_ k /\ k <_ M ) -> ( 1 <_ i -> 1 <_ k ) ) ) | 
						
							| 62 | 61 | imp |  |-  ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> ( 1 <_ i -> 1 <_ k ) ) | 
						
							| 63 | 62 | com12 |  |-  ( 1 <_ i -> ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> 1 <_ k ) ) | 
						
							| 64 | 63 | 3ad2ant3 |  |-  ( ( 1 e. ZZ /\ i e. ZZ /\ 1 <_ i ) -> ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> 1 <_ k ) ) | 
						
							| 65 | 51 64 | sylbi |  |-  ( i e. ( ZZ>= ` 1 ) -> ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> 1 <_ k ) ) | 
						
							| 66 | 65 | 3ad2ant1 |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> 1 <_ k ) ) | 
						
							| 67 | 23 66 | sylbi |  |-  ( i e. ( 1 ..^ M ) -> ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> 1 <_ k ) ) | 
						
							| 68 | 50 67 | biimtrid |  |-  ( i e. ( 1 ..^ M ) -> ( k e. ( i ... M ) -> 1 <_ k ) ) | 
						
							| 69 | 68 | imp |  |-  ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) ) -> 1 <_ k ) | 
						
							| 70 | 69 | 3adant3 |  |-  ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) /\ -. k = M ) -> 1 <_ k ) | 
						
							| 71 |  | zre |  |-  ( M e. ZZ -> M e. RR ) | 
						
							| 72 | 71 55 | anim12ci |  |-  ( ( M e. ZZ /\ k e. ZZ ) -> ( k e. RR /\ M e. RR ) ) | 
						
							| 73 | 72 | 3adant1 |  |-  ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( k e. RR /\ M e. RR ) ) | 
						
							| 74 |  | ltlen |  |-  ( ( k e. RR /\ M e. RR ) -> ( k < M <-> ( k <_ M /\ M =/= k ) ) ) | 
						
							| 75 | 73 74 | syl |  |-  ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( k < M <-> ( k <_ M /\ M =/= k ) ) ) | 
						
							| 76 |  | nesym |  |-  ( M =/= k <-> -. k = M ) | 
						
							| 77 | 76 | anbi2i |  |-  ( ( k <_ M /\ M =/= k ) <-> ( k <_ M /\ -. k = M ) ) | 
						
							| 78 | 75 77 | bitr2di |  |-  ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( ( k <_ M /\ -. k = M ) <-> k < M ) ) | 
						
							| 79 | 78 | biimpd |  |-  ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( ( k <_ M /\ -. k = M ) -> k < M ) ) | 
						
							| 80 | 79 | expd |  |-  ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( k <_ M -> ( -. k = M -> k < M ) ) ) | 
						
							| 81 | 80 | adantld |  |-  ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) -> ( ( i <_ k /\ k <_ M ) -> ( -. k = M -> k < M ) ) ) | 
						
							| 82 | 81 | imp |  |-  ( ( ( i e. ZZ /\ M e. ZZ /\ k e. ZZ ) /\ ( i <_ k /\ k <_ M ) ) -> ( -. k = M -> k < M ) ) | 
						
							| 83 | 50 82 | sylbi |  |-  ( k e. ( i ... M ) -> ( -. k = M -> k < M ) ) | 
						
							| 84 | 83 | imp |  |-  ( ( k e. ( i ... M ) /\ -. k = M ) -> k < M ) | 
						
							| 85 | 84 | 3adant1 |  |-  ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) /\ -. k = M ) -> k < M ) | 
						
							| 86 | 70 85 | jca |  |-  ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) /\ -. k = M ) -> ( 1 <_ k /\ k < M ) ) | 
						
							| 87 |  | elfzelz |  |-  ( k e. ( i ... M ) -> k e. ZZ ) | 
						
							| 88 |  | 1zzd |  |-  ( k e. ( i ... M ) -> 1 e. ZZ ) | 
						
							| 89 |  | elfzel2 |  |-  ( k e. ( i ... M ) -> M e. ZZ ) | 
						
							| 90 | 87 88 89 | 3jca |  |-  ( k e. ( i ... M ) -> ( k e. ZZ /\ 1 e. ZZ /\ M e. ZZ ) ) | 
						
							| 91 | 90 | 3ad2ant2 |  |-  ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) /\ -. k = M ) -> ( k e. ZZ /\ 1 e. ZZ /\ M e. ZZ ) ) | 
						
							| 92 |  | elfzo |  |-  ( ( k e. ZZ /\ 1 e. ZZ /\ M e. ZZ ) -> ( k e. ( 1 ..^ M ) <-> ( 1 <_ k /\ k < M ) ) ) | 
						
							| 93 | 91 92 | syl |  |-  ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) /\ -. k = M ) -> ( k e. ( 1 ..^ M ) <-> ( 1 <_ k /\ k < M ) ) ) | 
						
							| 94 | 86 93 | mpbird |  |-  ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... M ) /\ -. k = M ) -> k e. ( 1 ..^ M ) ) | 
						
							| 95 | 94 | 3exp |  |-  ( i e. ( 1 ..^ M ) -> ( k e. ( i ... M ) -> ( -. k = M -> k e. ( 1 ..^ M ) ) ) ) | 
						
							| 96 | 95 | ad2antll |  |-  ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( k e. ( i ... M ) -> ( -. k = M -> k e. ( 1 ..^ M ) ) ) ) | 
						
							| 97 | 96 | imp |  |-  ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> ( -. k = M -> k e. ( 1 ..^ M ) ) ) | 
						
							| 98 | 97 | impcom |  |-  ( ( -. k = M /\ ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) ) -> k e. ( 1 ..^ M ) ) | 
						
							| 99 | 45 49 98 | iccpartipre |  |-  ( ( -. k = M /\ ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) ) -> ( P ` k ) e. RR ) | 
						
							| 100 | 99 | ex |  |-  ( -. k = M -> ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> ( P ` k ) e. RR ) ) | 
						
							| 101 | 41 100 | pm2.61i |  |-  ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... M ) ) -> ( P ` k ) e. RR ) | 
						
							| 102 | 43 | adantr |  |-  ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... ( M - 1 ) ) ) -> M e. NN ) | 
						
							| 103 | 47 | adantr |  |-  ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... ( M - 1 ) ) ) -> P e. ( RePart ` M ) ) | 
						
							| 104 |  | 1eluzge0 |  |-  1 e. ( ZZ>= ` 0 ) | 
						
							| 105 |  | fzoss1 |  |-  ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ..^ M ) C_ ( 0 ..^ M ) ) | 
						
							| 106 | 104 105 | mp1i |  |-  ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... ( M - 1 ) ) ) -> ( 1 ..^ M ) C_ ( 0 ..^ M ) ) | 
						
							| 107 |  | elfzoel2 |  |-  ( i e. ( 1 ..^ M ) -> M e. ZZ ) | 
						
							| 108 |  | fzoval |  |-  ( M e. ZZ -> ( i ..^ M ) = ( i ... ( M - 1 ) ) ) | 
						
							| 109 | 107 108 | syl |  |-  ( i e. ( 1 ..^ M ) -> ( i ..^ M ) = ( i ... ( M - 1 ) ) ) | 
						
							| 110 | 109 | eqcomd |  |-  ( i e. ( 1 ..^ M ) -> ( i ... ( M - 1 ) ) = ( i ..^ M ) ) | 
						
							| 111 | 110 | eleq2d |  |-  ( i e. ( 1 ..^ M ) -> ( k e. ( i ... ( M - 1 ) ) <-> k e. ( i ..^ M ) ) ) | 
						
							| 112 |  | elfzouz |  |-  ( i e. ( 1 ..^ M ) -> i e. ( ZZ>= ` 1 ) ) | 
						
							| 113 |  | fzoss1 |  |-  ( i e. ( ZZ>= ` 1 ) -> ( i ..^ M ) C_ ( 1 ..^ M ) ) | 
						
							| 114 | 112 113 | syl |  |-  ( i e. ( 1 ..^ M ) -> ( i ..^ M ) C_ ( 1 ..^ M ) ) | 
						
							| 115 | 114 | sseld |  |-  ( i e. ( 1 ..^ M ) -> ( k e. ( i ..^ M ) -> k e. ( 1 ..^ M ) ) ) | 
						
							| 116 | 111 115 | sylbid |  |-  ( i e. ( 1 ..^ M ) -> ( k e. ( i ... ( M - 1 ) ) -> k e. ( 1 ..^ M ) ) ) | 
						
							| 117 | 116 | imp |  |-  ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... ( M - 1 ) ) ) -> k e. ( 1 ..^ M ) ) | 
						
							| 118 | 106 117 | sseldd |  |-  ( ( i e. ( 1 ..^ M ) /\ k e. ( i ... ( M - 1 ) ) ) -> k e. ( 0 ..^ M ) ) | 
						
							| 119 | 118 | ex |  |-  ( i e. ( 1 ..^ M ) -> ( k e. ( i ... ( M - 1 ) ) -> k e. ( 0 ..^ M ) ) ) | 
						
							| 120 | 119 | ad2antll |  |-  ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( k e. ( i ... ( M - 1 ) ) -> k e. ( 0 ..^ M ) ) ) | 
						
							| 121 | 120 | imp |  |-  ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... ( M - 1 ) ) ) -> k e. ( 0 ..^ M ) ) | 
						
							| 122 |  | iccpartimp |  |-  ( ( M e. NN /\ P e. ( RePart ` M ) /\ k e. ( 0 ..^ M ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` k ) < ( P ` ( k + 1 ) ) ) ) | 
						
							| 123 | 102 103 121 122 | syl3anc |  |-  ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... ( M - 1 ) ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` k ) < ( P ` ( k + 1 ) ) ) ) | 
						
							| 124 | 123 | simprd |  |-  ( ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) /\ k e. ( i ... ( M - 1 ) ) ) -> ( P ` k ) < ( P ` ( k + 1 ) ) ) | 
						
							| 125 | 22 34 101 124 | smonoord |  |-  ( ( ( P ` M ) e. RR /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( P ` i ) < ( P ` M ) ) | 
						
							| 126 | 125 | ex |  |-  ( ( P ` M ) e. RR -> ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 127 |  | simpr |  |-  ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> i e. ( 1 ..^ M ) ) | 
						
							| 128 | 42 46 127 | iccpartipre |  |-  ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) e. RR ) | 
						
							| 129 |  | ltpnf |  |-  ( ( P ` i ) e. RR -> ( P ` i ) < +oo ) | 
						
							| 130 | 128 129 | syl |  |-  ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) < +oo ) | 
						
							| 131 |  | breq2 |  |-  ( ( P ` M ) = +oo -> ( ( P ` i ) < ( P ` M ) <-> ( P ` i ) < +oo ) ) | 
						
							| 132 | 130 131 | imbitrrid |  |-  ( ( P ` M ) = +oo -> ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 133 | 42 | adantl |  |-  ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> M e. NN ) | 
						
							| 134 | 46 | adantl |  |-  ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> P e. ( RePart ` M ) ) | 
						
							| 135 |  | elfzofz |  |-  ( i e. ( 1 ..^ M ) -> i e. ( 1 ... M ) ) | 
						
							| 136 | 135 | ad2antll |  |-  ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> i e. ( 1 ... M ) ) | 
						
							| 137 |  | elfzubelfz |  |-  ( i e. ( 1 ... M ) -> M e. ( 1 ... M ) ) | 
						
							| 138 | 136 137 | syl |  |-  ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> M e. ( 1 ... M ) ) | 
						
							| 139 | 133 134 138 | iccpartgtprec |  |-  ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( P ` ( M - 1 ) ) < ( P ` M ) ) | 
						
							| 140 |  | breq2 |  |-  ( -oo = ( P ` M ) -> ( ( P ` ( M - 1 ) ) < -oo <-> ( P ` ( M - 1 ) ) < ( P ` M ) ) ) | 
						
							| 141 | 140 | eqcoms |  |-  ( ( P ` M ) = -oo -> ( ( P ` ( M - 1 ) ) < -oo <-> ( P ` ( M - 1 ) ) < ( P ` M ) ) ) | 
						
							| 142 | 141 | adantr |  |-  ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( ( P ` ( M - 1 ) ) < -oo <-> ( P ` ( M - 1 ) ) < ( P ` M ) ) ) | 
						
							| 143 | 139 142 | mpbird |  |-  ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( P ` ( M - 1 ) ) < -oo ) | 
						
							| 144 | 15 | adantl |  |-  ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> M e. NN0 ) | 
						
							| 145 | 144 | adantr |  |-  ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> M e. NN0 ) | 
						
							| 146 |  | nnne0 |  |-  ( M e. NN -> M =/= 0 ) | 
						
							| 147 | 146 | adantl |  |-  ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> M =/= 0 ) | 
						
							| 148 |  | df-ne |  |-  ( M =/= 1 <-> -. M = 1 ) | 
						
							| 149 | 148 | biimpri |  |-  ( -. M = 1 -> M =/= 1 ) | 
						
							| 150 | 149 | adantl |  |-  ( ( ph /\ -. M = 1 ) -> M =/= 1 ) | 
						
							| 151 | 150 | adantr |  |-  ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> M =/= 1 ) | 
						
							| 152 | 144 147 151 | 3jca |  |-  ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> ( M e. NN0 /\ M =/= 0 /\ M =/= 1 ) ) | 
						
							| 153 | 152 | adantr |  |-  ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( M e. NN0 /\ M =/= 0 /\ M =/= 1 ) ) | 
						
							| 154 |  | nn0n0n1ge2 |  |-  ( ( M e. NN0 /\ M =/= 0 /\ M =/= 1 ) -> 2 <_ M ) | 
						
							| 155 | 153 154 | syl |  |-  ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> 2 <_ M ) | 
						
							| 156 | 145 155 | jca |  |-  ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( M e. NN0 /\ 2 <_ M ) ) | 
						
							| 157 | 156 | adantl |  |-  ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( M e. NN0 /\ 2 <_ M ) ) | 
						
							| 158 |  | ige2m1fz |  |-  ( ( M e. NN0 /\ 2 <_ M ) -> ( M - 1 ) e. ( 0 ... M ) ) | 
						
							| 159 | 157 158 | syl |  |-  ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( M - 1 ) e. ( 0 ... M ) ) | 
						
							| 160 | 133 134 159 | iccpartxr |  |-  ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( P ` ( M - 1 ) ) e. RR* ) | 
						
							| 161 |  | nltmnf |  |-  ( ( P ` ( M - 1 ) ) e. RR* -> -. ( P ` ( M - 1 ) ) < -oo ) | 
						
							| 162 | 160 161 | syl |  |-  ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> -. ( P ` ( M - 1 ) ) < -oo ) | 
						
							| 163 | 143 162 | pm2.21dd |  |-  ( ( ( P ` M ) = -oo /\ ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) ) -> ( P ` i ) < ( P ` M ) ) | 
						
							| 164 | 163 | ex |  |-  ( ( P ` M ) = -oo -> ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 165 | 126 132 164 | 3jaoi |  |-  ( ( ( P ` M ) e. RR \/ ( P ` M ) = +oo \/ ( P ` M ) = -oo ) -> ( ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 166 | 165 | impl |  |-  ( ( ( ( ( P ` M ) e. RR \/ ( P ` M ) = +oo \/ ( P ` M ) = -oo ) /\ ( ( ph /\ -. M = 1 ) /\ M e. NN ) ) /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) | 
						
							| 167 | 166 | ralrimiva |  |-  ( ( ( ( P ` M ) e. RR \/ ( P ` M ) = +oo \/ ( P ` M ) = -oo ) /\ ( ( ph /\ -. M = 1 ) /\ M e. NN ) ) -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) | 
						
							| 168 | 167 | ex |  |-  ( ( ( P ` M ) e. RR \/ ( P ` M ) = +oo \/ ( P ` M ) = -oo ) -> ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) ) | 
						
							| 169 | 20 168 | sylbi |  |-  ( ( P ` M ) e. RR* -> ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) ) | 
						
							| 170 | 19 169 | mpcom |  |-  ( ( ( ph /\ -. M = 1 ) /\ M e. NN ) -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) | 
						
							| 171 | 170 | ex |  |-  ( ( ph /\ -. M = 1 ) -> ( M e. NN -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) ) | 
						
							| 172 | 171 | expcom |  |-  ( -. M = 1 -> ( ph -> ( M e. NN -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) ) ) | 
						
							| 173 | 11 172 | pm2.61i |  |-  ( ph -> ( M e. NN -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) ) | 
						
							| 174 | 1 173 | mpd |  |-  ( ph -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) |