| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartgtprec.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 |  | ral0 |  |-  A. i e. (/) ( P ` 0 ) < ( P ` i ) | 
						
							| 4 |  | oveq2 |  |-  ( M = 1 -> ( 1 ..^ M ) = ( 1 ..^ 1 ) ) | 
						
							| 5 |  | fzo0 |  |-  ( 1 ..^ 1 ) = (/) | 
						
							| 6 | 4 5 | eqtrdi |  |-  ( M = 1 -> ( 1 ..^ M ) = (/) ) | 
						
							| 7 | 6 | raleqdv |  |-  ( M = 1 -> ( A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) <-> A. i e. (/) ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 8 | 3 7 | mpbiri |  |-  ( M = 1 -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) | 
						
							| 9 | 8 | a1d |  |-  ( M = 1 -> ( ph -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 10 | 1 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 11 |  | 0elfz |  |-  ( M e. NN0 -> 0 e. ( 0 ... M ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 13 | 1 2 12 | iccpartxr |  |-  ( ph -> ( P ` 0 ) e. RR* ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ -. M = 1 ) -> ( P ` 0 ) e. RR* ) | 
						
							| 15 |  | elxr |  |-  ( ( P ` 0 ) e. RR* <-> ( ( P ` 0 ) e. RR \/ ( P ` 0 ) = +oo \/ ( P ` 0 ) = -oo ) ) | 
						
							| 16 |  | 0zd |  |-  ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> 0 e. ZZ ) | 
						
							| 17 |  | elfzouz |  |-  ( i e. ( 1 ..^ M ) -> i e. ( ZZ>= ` 1 ) ) | 
						
							| 18 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 19 | 18 | fveq2i |  |-  ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) | 
						
							| 20 | 17 19 | eleqtrrdi |  |-  ( i e. ( 1 ..^ M ) -> i e. ( ZZ>= ` ( 0 + 1 ) ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> i e. ( ZZ>= ` ( 0 + 1 ) ) ) | 
						
							| 22 |  | fveq2 |  |-  ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) | 
						
							| 23 | 22 | eqcomd |  |-  ( k = 0 -> ( P ` 0 ) = ( P ` k ) ) | 
						
							| 24 | 23 | eleq1d |  |-  ( k = 0 -> ( ( P ` 0 ) e. RR <-> ( P ` k ) e. RR ) ) | 
						
							| 25 | 24 | biimpcd |  |-  ( ( P ` 0 ) e. RR -> ( k = 0 -> ( P ` k ) e. RR ) ) | 
						
							| 26 | 25 | ad3antrrr |  |-  ( ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) /\ k e. ( 0 ... i ) ) -> ( k = 0 -> ( P ` k ) e. RR ) ) | 
						
							| 27 | 1 | adantr |  |-  ( ( ph /\ ( i e. ( 1 ..^ M ) /\ ( k e. ( 0 ... i ) /\ k =/= 0 ) ) ) -> M e. NN ) | 
						
							| 28 | 2 | adantr |  |-  ( ( ph /\ ( i e. ( 1 ..^ M ) /\ ( k e. ( 0 ... i ) /\ k =/= 0 ) ) ) -> P e. ( RePart ` M ) ) | 
						
							| 29 |  | elfz2nn0 |  |-  ( k e. ( 0 ... i ) <-> ( k e. NN0 /\ i e. NN0 /\ k <_ i ) ) | 
						
							| 30 |  | elfzo2 |  |-  ( i e. ( 1 ..^ M ) <-> ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) ) | 
						
							| 31 |  | simpl1 |  |-  ( ( ( k e. NN0 /\ i e. NN0 /\ k <_ i ) /\ ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) ) -> k e. NN0 ) | 
						
							| 32 |  | simpr2 |  |-  ( ( ( k e. NN0 /\ i e. NN0 /\ k <_ i ) /\ ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) ) -> M e. ZZ ) | 
						
							| 33 |  | nn0ge0 |  |-  ( i e. NN0 -> 0 <_ i ) | 
						
							| 34 |  | 0red |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ ) -> 0 e. RR ) | 
						
							| 35 |  | eluzelre |  |-  ( i e. ( ZZ>= ` 1 ) -> i e. RR ) | 
						
							| 36 | 35 | adantr |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ ) -> i e. RR ) | 
						
							| 37 |  | zre |  |-  ( M e. ZZ -> M e. RR ) | 
						
							| 38 | 37 | adantl |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ ) -> M e. RR ) | 
						
							| 39 |  | lelttr |  |-  ( ( 0 e. RR /\ i e. RR /\ M e. RR ) -> ( ( 0 <_ i /\ i < M ) -> 0 < M ) ) | 
						
							| 40 | 34 36 38 39 | syl3anc |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ ) -> ( ( 0 <_ i /\ i < M ) -> 0 < M ) ) | 
						
							| 41 | 40 | expcomd |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ ) -> ( i < M -> ( 0 <_ i -> 0 < M ) ) ) | 
						
							| 42 | 41 | 3impia |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> ( 0 <_ i -> 0 < M ) ) | 
						
							| 43 | 33 42 | syl5com |  |-  ( i e. NN0 -> ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> 0 < M ) ) | 
						
							| 44 | 43 | 3ad2ant2 |  |-  ( ( k e. NN0 /\ i e. NN0 /\ k <_ i ) -> ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> 0 < M ) ) | 
						
							| 45 | 44 | imp |  |-  ( ( ( k e. NN0 /\ i e. NN0 /\ k <_ i ) /\ ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) ) -> 0 < M ) | 
						
							| 46 |  | elnnz |  |-  ( M e. NN <-> ( M e. ZZ /\ 0 < M ) ) | 
						
							| 47 | 32 45 46 | sylanbrc |  |-  ( ( ( k e. NN0 /\ i e. NN0 /\ k <_ i ) /\ ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) ) -> M e. NN ) | 
						
							| 48 |  | nn0re |  |-  ( k e. NN0 -> k e. RR ) | 
						
							| 49 | 48 | ad2antrl |  |-  ( ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ ) /\ ( k e. NN0 /\ i e. NN0 ) ) -> k e. RR ) | 
						
							| 50 |  | nn0re |  |-  ( i e. NN0 -> i e. RR ) | 
						
							| 51 | 50 | adantl |  |-  ( ( k e. NN0 /\ i e. NN0 ) -> i e. RR ) | 
						
							| 52 | 51 | adantl |  |-  ( ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ ) /\ ( k e. NN0 /\ i e. NN0 ) ) -> i e. RR ) | 
						
							| 53 | 38 | adantr |  |-  ( ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ ) /\ ( k e. NN0 /\ i e. NN0 ) ) -> M e. RR ) | 
						
							| 54 |  | lelttr |  |-  ( ( k e. RR /\ i e. RR /\ M e. RR ) -> ( ( k <_ i /\ i < M ) -> k < M ) ) | 
						
							| 55 | 54 | expd |  |-  ( ( k e. RR /\ i e. RR /\ M e. RR ) -> ( k <_ i -> ( i < M -> k < M ) ) ) | 
						
							| 56 | 49 52 53 55 | syl3anc |  |-  ( ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ ) /\ ( k e. NN0 /\ i e. NN0 ) ) -> ( k <_ i -> ( i < M -> k < M ) ) ) | 
						
							| 57 | 56 | exp31 |  |-  ( i e. ( ZZ>= ` 1 ) -> ( M e. ZZ -> ( ( k e. NN0 /\ i e. NN0 ) -> ( k <_ i -> ( i < M -> k < M ) ) ) ) ) | 
						
							| 58 | 57 | com34 |  |-  ( i e. ( ZZ>= ` 1 ) -> ( M e. ZZ -> ( k <_ i -> ( ( k e. NN0 /\ i e. NN0 ) -> ( i < M -> k < M ) ) ) ) ) | 
						
							| 59 | 58 | com35 |  |-  ( i e. ( ZZ>= ` 1 ) -> ( M e. ZZ -> ( i < M -> ( ( k e. NN0 /\ i e. NN0 ) -> ( k <_ i -> k < M ) ) ) ) ) | 
						
							| 60 | 59 | 3imp |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> ( ( k e. NN0 /\ i e. NN0 ) -> ( k <_ i -> k < M ) ) ) | 
						
							| 61 | 60 | expdcom |  |-  ( k e. NN0 -> ( i e. NN0 -> ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> ( k <_ i -> k < M ) ) ) ) | 
						
							| 62 | 61 | com34 |  |-  ( k e. NN0 -> ( i e. NN0 -> ( k <_ i -> ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> k < M ) ) ) ) | 
						
							| 63 | 62 | 3imp1 |  |-  ( ( ( k e. NN0 /\ i e. NN0 /\ k <_ i ) /\ ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) ) -> k < M ) | 
						
							| 64 |  | elfzo0 |  |-  ( k e. ( 0 ..^ M ) <-> ( k e. NN0 /\ M e. NN /\ k < M ) ) | 
						
							| 65 | 31 47 63 64 | syl3anbrc |  |-  ( ( ( k e. NN0 /\ i e. NN0 /\ k <_ i ) /\ ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) ) -> k e. ( 0 ..^ M ) ) | 
						
							| 66 | 65 | ex |  |-  ( ( k e. NN0 /\ i e. NN0 /\ k <_ i ) -> ( ( i e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ i < M ) -> k e. ( 0 ..^ M ) ) ) | 
						
							| 67 | 30 66 | biimtrid |  |-  ( ( k e. NN0 /\ i e. NN0 /\ k <_ i ) -> ( i e. ( 1 ..^ M ) -> k e. ( 0 ..^ M ) ) ) | 
						
							| 68 | 29 67 | sylbi |  |-  ( k e. ( 0 ... i ) -> ( i e. ( 1 ..^ M ) -> k e. ( 0 ..^ M ) ) ) | 
						
							| 69 | 68 | adantr |  |-  ( ( k e. ( 0 ... i ) /\ k =/= 0 ) -> ( i e. ( 1 ..^ M ) -> k e. ( 0 ..^ M ) ) ) | 
						
							| 70 | 69 | impcom |  |-  ( ( i e. ( 1 ..^ M ) /\ ( k e. ( 0 ... i ) /\ k =/= 0 ) ) -> k e. ( 0 ..^ M ) ) | 
						
							| 71 |  | simpr |  |-  ( ( k e. ( 0 ... i ) /\ k =/= 0 ) -> k =/= 0 ) | 
						
							| 72 | 71 | adantl |  |-  ( ( i e. ( 1 ..^ M ) /\ ( k e. ( 0 ... i ) /\ k =/= 0 ) ) -> k =/= 0 ) | 
						
							| 73 |  | fzo1fzo0n0 |  |-  ( k e. ( 1 ..^ M ) <-> ( k e. ( 0 ..^ M ) /\ k =/= 0 ) ) | 
						
							| 74 | 70 72 73 | sylanbrc |  |-  ( ( i e. ( 1 ..^ M ) /\ ( k e. ( 0 ... i ) /\ k =/= 0 ) ) -> k e. ( 1 ..^ M ) ) | 
						
							| 75 | 74 | adantl |  |-  ( ( ph /\ ( i e. ( 1 ..^ M ) /\ ( k e. ( 0 ... i ) /\ k =/= 0 ) ) ) -> k e. ( 1 ..^ M ) ) | 
						
							| 76 | 27 28 75 | iccpartipre |  |-  ( ( ph /\ ( i e. ( 1 ..^ M ) /\ ( k e. ( 0 ... i ) /\ k =/= 0 ) ) ) -> ( P ` k ) e. RR ) | 
						
							| 77 | 76 | exp32 |  |-  ( ph -> ( i e. ( 1 ..^ M ) -> ( ( k e. ( 0 ... i ) /\ k =/= 0 ) -> ( P ` k ) e. RR ) ) ) | 
						
							| 78 | 77 | ad2antrl |  |-  ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) -> ( i e. ( 1 ..^ M ) -> ( ( k e. ( 0 ... i ) /\ k =/= 0 ) -> ( P ` k ) e. RR ) ) ) | 
						
							| 79 | 78 | imp |  |-  ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( ( k e. ( 0 ... i ) /\ k =/= 0 ) -> ( P ` k ) e. RR ) ) | 
						
							| 80 | 79 | expdimp |  |-  ( ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) /\ k e. ( 0 ... i ) ) -> ( k =/= 0 -> ( P ` k ) e. RR ) ) | 
						
							| 81 | 26 80 | pm2.61dne |  |-  ( ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) /\ k e. ( 0 ... i ) ) -> ( P ` k ) e. RR ) | 
						
							| 82 | 1 | adantr |  |-  ( ( ph /\ -. M = 1 ) -> M e. NN ) | 
						
							| 83 | 82 | ad3antlr |  |-  ( ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) /\ k e. ( 0 ... ( i - 1 ) ) ) -> M e. NN ) | 
						
							| 84 | 2 | adantr |  |-  ( ( ph /\ -. M = 1 ) -> P e. ( RePart ` M ) ) | 
						
							| 85 | 84 | ad3antlr |  |-  ( ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) /\ k e. ( 0 ... ( i - 1 ) ) ) -> P e. ( RePart ` M ) ) | 
						
							| 86 |  | elfzoelz |  |-  ( i e. ( 1 ..^ M ) -> i e. ZZ ) | 
						
							| 87 | 86 | adantl |  |-  ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> i e. ZZ ) | 
						
							| 88 |  | fzoval |  |-  ( i e. ZZ -> ( 0 ..^ i ) = ( 0 ... ( i - 1 ) ) ) | 
						
							| 89 | 88 | eqcomd |  |-  ( i e. ZZ -> ( 0 ... ( i - 1 ) ) = ( 0 ..^ i ) ) | 
						
							| 90 | 87 89 | syl |  |-  ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( 0 ... ( i - 1 ) ) = ( 0 ..^ i ) ) | 
						
							| 91 | 90 | eleq2d |  |-  ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( k e. ( 0 ... ( i - 1 ) ) <-> k e. ( 0 ..^ i ) ) ) | 
						
							| 92 |  | elfzouz2 |  |-  ( i e. ( 1 ..^ M ) -> M e. ( ZZ>= ` i ) ) | 
						
							| 93 | 92 | adantl |  |-  ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> M e. ( ZZ>= ` i ) ) | 
						
							| 94 |  | fzoss2 |  |-  ( M e. ( ZZ>= ` i ) -> ( 0 ..^ i ) C_ ( 0 ..^ M ) ) | 
						
							| 95 | 93 94 | syl |  |-  ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( 0 ..^ i ) C_ ( 0 ..^ M ) ) | 
						
							| 96 | 95 | sseld |  |-  ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( k e. ( 0 ..^ i ) -> k e. ( 0 ..^ M ) ) ) | 
						
							| 97 | 91 96 | sylbid |  |-  ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( k e. ( 0 ... ( i - 1 ) ) -> k e. ( 0 ..^ M ) ) ) | 
						
							| 98 | 97 | imp |  |-  ( ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) /\ k e. ( 0 ... ( i - 1 ) ) ) -> k e. ( 0 ..^ M ) ) | 
						
							| 99 |  | iccpartimp |  |-  ( ( M e. NN /\ P e. ( RePart ` M ) /\ k e. ( 0 ..^ M ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` k ) < ( P ` ( k + 1 ) ) ) ) | 
						
							| 100 | 83 85 98 99 | syl3anc |  |-  ( ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) /\ k e. ( 0 ... ( i - 1 ) ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` k ) < ( P ` ( k + 1 ) ) ) ) | 
						
							| 101 | 100 | simprd |  |-  ( ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) /\ k e. ( 0 ... ( i - 1 ) ) ) -> ( P ` k ) < ( P ` ( k + 1 ) ) ) | 
						
							| 102 | 16 21 81 101 | smonoord |  |-  ( ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( P ` 0 ) < ( P ` i ) ) | 
						
							| 103 | 102 | ralrimiva |  |-  ( ( ( P ` 0 ) e. RR /\ ( ph /\ -. M = 1 ) ) -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) | 
						
							| 104 | 103 | ex |  |-  ( ( P ` 0 ) e. RR -> ( ( ph /\ -. M = 1 ) -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 105 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ M ) <-> M e. NN ) | 
						
							| 106 | 1 105 | sylibr |  |-  ( ph -> 0 e. ( 0 ..^ M ) ) | 
						
							| 107 | 1 2 106 | 3jca |  |-  ( ph -> ( M e. NN /\ P e. ( RePart ` M ) /\ 0 e. ( 0 ..^ M ) ) ) | 
						
							| 108 | 107 | ad2antrl |  |-  ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) -> ( M e. NN /\ P e. ( RePart ` M ) /\ 0 e. ( 0 ..^ M ) ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( M e. NN /\ P e. ( RePart ` M ) /\ 0 e. ( 0 ..^ M ) ) ) | 
						
							| 110 |  | iccpartimp |  |-  ( ( M e. NN /\ P e. ( RePart ` M ) /\ 0 e. ( 0 ..^ M ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` 0 ) < ( P ` ( 0 + 1 ) ) ) ) | 
						
							| 111 | 109 110 | syl |  |-  ( ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` 0 ) < ( P ` ( 0 + 1 ) ) ) ) | 
						
							| 112 | 111 | simprd |  |-  ( ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( P ` 0 ) < ( P ` ( 0 + 1 ) ) ) | 
						
							| 113 |  | breq1 |  |-  ( ( P ` 0 ) = +oo -> ( ( P ` 0 ) < ( P ` ( 0 + 1 ) ) <-> +oo < ( P ` ( 0 + 1 ) ) ) ) | 
						
							| 114 | 113 | adantr |  |-  ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) -> ( ( P ` 0 ) < ( P ` ( 0 + 1 ) ) <-> +oo < ( P ` ( 0 + 1 ) ) ) ) | 
						
							| 115 | 114 | adantr |  |-  ( ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( ( P ` 0 ) < ( P ` ( 0 + 1 ) ) <-> +oo < ( P ` ( 0 + 1 ) ) ) ) | 
						
							| 116 | 112 115 | mpbid |  |-  ( ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> +oo < ( P ` ( 0 + 1 ) ) ) | 
						
							| 117 | 1 | ad2antrl |  |-  ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) -> M e. NN ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> M e. NN ) | 
						
							| 119 | 2 | ad2antrl |  |-  ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) -> P e. ( RePart ` M ) ) | 
						
							| 120 | 119 | adantr |  |-  ( ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> P e. ( RePart ` M ) ) | 
						
							| 121 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 122 | 121 | a1i |  |-  ( M e. NN -> 1 e. NN0 ) | 
						
							| 123 |  | nnnn0 |  |-  ( M e. NN -> M e. NN0 ) | 
						
							| 124 |  | nnge1 |  |-  ( M e. NN -> 1 <_ M ) | 
						
							| 125 | 122 123 124 | 3jca |  |-  ( M e. NN -> ( 1 e. NN0 /\ M e. NN0 /\ 1 <_ M ) ) | 
						
							| 126 | 1 125 | syl |  |-  ( ph -> ( 1 e. NN0 /\ M e. NN0 /\ 1 <_ M ) ) | 
						
							| 127 |  | elfz2nn0 |  |-  ( 1 e. ( 0 ... M ) <-> ( 1 e. NN0 /\ M e. NN0 /\ 1 <_ M ) ) | 
						
							| 128 | 126 127 | sylibr |  |-  ( ph -> 1 e. ( 0 ... M ) ) | 
						
							| 129 | 18 128 | eqeltrid |  |-  ( ph -> ( 0 + 1 ) e. ( 0 ... M ) ) | 
						
							| 130 | 129 | ad2antrl |  |-  ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) -> ( 0 + 1 ) e. ( 0 ... M ) ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( 0 + 1 ) e. ( 0 ... M ) ) | 
						
							| 132 | 118 120 131 | iccpartxr |  |-  ( ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( P ` ( 0 + 1 ) ) e. RR* ) | 
						
							| 133 |  | pnfnlt |  |-  ( ( P ` ( 0 + 1 ) ) e. RR* -> -. +oo < ( P ` ( 0 + 1 ) ) ) | 
						
							| 134 | 132 133 | syl |  |-  ( ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> -. +oo < ( P ` ( 0 + 1 ) ) ) | 
						
							| 135 | 116 134 | pm2.21dd |  |-  ( ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) /\ i e. ( 1 ..^ M ) ) -> ( P ` 0 ) < ( P ` i ) ) | 
						
							| 136 | 135 | ralrimiva |  |-  ( ( ( P ` 0 ) = +oo /\ ( ph /\ -. M = 1 ) ) -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) | 
						
							| 137 | 136 | ex |  |-  ( ( P ` 0 ) = +oo -> ( ( ph /\ -. M = 1 ) -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 138 | 1 | adantr |  |-  ( ( ph /\ i e. ( 1 ..^ M ) ) -> M e. NN ) | 
						
							| 139 | 2 | adantr |  |-  ( ( ph /\ i e. ( 1 ..^ M ) ) -> P e. ( RePart ` M ) ) | 
						
							| 140 |  | simpr |  |-  ( ( ph /\ i e. ( 1 ..^ M ) ) -> i e. ( 1 ..^ M ) ) | 
						
							| 141 | 138 139 140 | iccpartipre |  |-  ( ( ph /\ i e. ( 1 ..^ M ) ) -> ( P ` i ) e. RR ) | 
						
							| 142 |  | mnflt |  |-  ( ( P ` i ) e. RR -> -oo < ( P ` i ) ) | 
						
							| 143 | 141 142 | syl |  |-  ( ( ph /\ i e. ( 1 ..^ M ) ) -> -oo < ( P ` i ) ) | 
						
							| 144 | 143 | ralrimiva |  |-  ( ph -> A. i e. ( 1 ..^ M ) -oo < ( P ` i ) ) | 
						
							| 145 | 144 | ad2antrl |  |-  ( ( ( P ` 0 ) = -oo /\ ( ph /\ -. M = 1 ) ) -> A. i e. ( 1 ..^ M ) -oo < ( P ` i ) ) | 
						
							| 146 |  | breq1 |  |-  ( ( P ` 0 ) = -oo -> ( ( P ` 0 ) < ( P ` i ) <-> -oo < ( P ` i ) ) ) | 
						
							| 147 | 146 | adantr |  |-  ( ( ( P ` 0 ) = -oo /\ ( ph /\ -. M = 1 ) ) -> ( ( P ` 0 ) < ( P ` i ) <-> -oo < ( P ` i ) ) ) | 
						
							| 148 | 147 | ralbidv |  |-  ( ( ( P ` 0 ) = -oo /\ ( ph /\ -. M = 1 ) ) -> ( A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) <-> A. i e. ( 1 ..^ M ) -oo < ( P ` i ) ) ) | 
						
							| 149 | 145 148 | mpbird |  |-  ( ( ( P ` 0 ) = -oo /\ ( ph /\ -. M = 1 ) ) -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) | 
						
							| 150 | 149 | ex |  |-  ( ( P ` 0 ) = -oo -> ( ( ph /\ -. M = 1 ) -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 151 | 104 137 150 | 3jaoi |  |-  ( ( ( P ` 0 ) e. RR \/ ( P ` 0 ) = +oo \/ ( P ` 0 ) = -oo ) -> ( ( ph /\ -. M = 1 ) -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 152 | 15 151 | sylbi |  |-  ( ( P ` 0 ) e. RR* -> ( ( ph /\ -. M = 1 ) -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 153 | 14 152 | mpcom |  |-  ( ( ph /\ -. M = 1 ) -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) | 
						
							| 154 | 153 | expcom |  |-  ( -. M = 1 -> ( ph -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) ) | 
						
							| 155 | 9 154 | pm2.61i |  |-  ( ph -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) |