Metamath Proof Explorer


Theorem iccpartigtl

Description: If there is a partition, then all intermediate points are strictly greater than the lower bound. (Contributed by AV, 12-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φM
iccpartgtprec.p φPRePartM
Assertion iccpartigtl φi1..^MP0<Pi

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φM
2 iccpartgtprec.p φPRePartM
3 ral0 iP0<Pi
4 oveq2 M=11..^M=1..^1
5 fzo0 1..^1=
6 4 5 eqtrdi M=11..^M=
7 6 raleqdv M=1i1..^MP0<PiiP0<Pi
8 3 7 mpbiri M=1i1..^MP0<Pi
9 8 a1d M=1φi1..^MP0<Pi
10 1 nnnn0d φM0
11 0elfz M000M
12 10 11 syl φ00M
13 1 2 12 iccpartxr φP0*
14 13 adantr φ¬M=1P0*
15 elxr P0*P0P0=+∞P0=−∞
16 0zd P0φ¬M=1i1..^M0
17 elfzouz i1..^Mi1
18 0p1e1 0+1=1
19 18 fveq2i 0+1=1
20 17 19 eleqtrrdi i1..^Mi0+1
21 20 adantl P0φ¬M=1i1..^Mi0+1
22 fveq2 k=0Pk=P0
23 22 eqcomd k=0P0=Pk
24 23 eleq1d k=0P0Pk
25 24 biimpcd P0k=0Pk
26 25 ad3antrrr P0φ¬M=1i1..^Mk0ik=0Pk
27 1 adantr φi1..^Mk0ik0M
28 2 adantr φi1..^Mk0ik0PRePartM
29 elfz2nn0 k0ik0i0ki
30 elfzo2 i1..^Mi1Mi<M
31 simpl1 k0i0kii1Mi<Mk0
32 simpr2 k0i0kii1Mi<MM
33 nn0ge0 i00i
34 0red i1M0
35 eluzelre i1i
36 35 adantr i1Mi
37 zre MM
38 37 adantl i1MM
39 lelttr 0iM0ii<M0<M
40 34 36 38 39 syl3anc i1M0ii<M0<M
41 40 expcomd i1Mi<M0i0<M
42 41 3impia i1Mi<M0i0<M
43 33 42 syl5com i0i1Mi<M0<M
44 43 3ad2ant2 k0i0kii1Mi<M0<M
45 44 imp k0i0kii1Mi<M0<M
46 elnnz MM0<M
47 32 45 46 sylanbrc k0i0kii1Mi<MM
48 nn0re k0k
49 48 ad2antrl i1Mk0i0k
50 nn0re i0i
51 50 adantl k0i0i
52 51 adantl i1Mk0i0i
53 38 adantr i1Mk0i0M
54 lelttr kiMkii<Mk<M
55 54 expd kiMkii<Mk<M
56 49 52 53 55 syl3anc i1Mk0i0kii<Mk<M
57 56 exp31 i1Mk0i0kii<Mk<M
58 57 com34 i1Mkik0i0i<Mk<M
59 58 com35 i1Mi<Mk0i0kik<M
60 59 3imp i1Mi<Mk0i0kik<M
61 60 expdcom k0i0i1Mi<Mkik<M
62 61 com34 k0i0kii1Mi<Mk<M
63 62 3imp1 k0i0kii1Mi<Mk<M
64 elfzo0 k0..^Mk0Mk<M
65 31 47 63 64 syl3anbrc k0i0kii1Mi<Mk0..^M
66 65 ex k0i0kii1Mi<Mk0..^M
67 30 66 biimtrid k0i0kii1..^Mk0..^M
68 29 67 sylbi k0ii1..^Mk0..^M
69 68 adantr k0ik0i1..^Mk0..^M
70 69 impcom i1..^Mk0ik0k0..^M
71 simpr k0ik0k0
72 71 adantl i1..^Mk0ik0k0
73 fzo1fzo0n0 k1..^Mk0..^Mk0
74 70 72 73 sylanbrc i1..^Mk0ik0k1..^M
75 74 adantl φi1..^Mk0ik0k1..^M
76 27 28 75 iccpartipre φi1..^Mk0ik0Pk
77 76 exp32 φi1..^Mk0ik0Pk
78 77 ad2antrl P0φ¬M=1i1..^Mk0ik0Pk
79 78 imp P0φ¬M=1i1..^Mk0ik0Pk
80 79 expdimp P0φ¬M=1i1..^Mk0ik0Pk
81 26 80 pm2.61dne P0φ¬M=1i1..^Mk0iPk
82 1 adantr φ¬M=1M
83 82 ad3antlr P0φ¬M=1i1..^Mk0i1M
84 2 adantr φ¬M=1PRePartM
85 84 ad3antlr P0φ¬M=1i1..^Mk0i1PRePartM
86 elfzoelz i1..^Mi
87 86 adantl P0φ¬M=1i1..^Mi
88 fzoval i0..^i=0i1
89 88 eqcomd i0i1=0..^i
90 87 89 syl P0φ¬M=1i1..^M0i1=0..^i
91 90 eleq2d P0φ¬M=1i1..^Mk0i1k0..^i
92 elfzouz2 i1..^MMi
93 92 adantl P0φ¬M=1i1..^MMi
94 fzoss2 Mi0..^i0..^M
95 93 94 syl P0φ¬M=1i1..^M0..^i0..^M
96 95 sseld P0φ¬M=1i1..^Mk0..^ik0..^M
97 91 96 sylbid P0φ¬M=1i1..^Mk0i1k0..^M
98 97 imp P0φ¬M=1i1..^Mk0i1k0..^M
99 iccpartimp MPRePartMk0..^MP*0MPk<Pk+1
100 83 85 98 99 syl3anc P0φ¬M=1i1..^Mk0i1P*0MPk<Pk+1
101 100 simprd P0φ¬M=1i1..^Mk0i1Pk<Pk+1
102 16 21 81 101 smonoord P0φ¬M=1i1..^MP0<Pi
103 102 ralrimiva P0φ¬M=1i1..^MP0<Pi
104 103 ex P0φ¬M=1i1..^MP0<Pi
105 lbfzo0 00..^MM
106 1 105 sylibr φ00..^M
107 1 2 106 3jca φMPRePartM00..^M
108 107 ad2antrl P0=+∞φ¬M=1MPRePartM00..^M
109 108 adantr P0=+∞φ¬M=1i1..^MMPRePartM00..^M
110 iccpartimp MPRePartM00..^MP*0MP0<P0+1
111 109 110 syl P0=+∞φ¬M=1i1..^MP*0MP0<P0+1
112 111 simprd P0=+∞φ¬M=1i1..^MP0<P0+1
113 breq1 P0=+∞P0<P0+1+∞<P0+1
114 113 adantr P0=+∞φ¬M=1P0<P0+1+∞<P0+1
115 114 adantr P0=+∞φ¬M=1i1..^MP0<P0+1+∞<P0+1
116 112 115 mpbid P0=+∞φ¬M=1i1..^M+∞<P0+1
117 1 ad2antrl P0=+∞φ¬M=1M
118 117 adantr P0=+∞φ¬M=1i1..^MM
119 2 ad2antrl P0=+∞φ¬M=1PRePartM
120 119 adantr P0=+∞φ¬M=1i1..^MPRePartM
121 1nn0 10
122 121 a1i M10
123 nnnn0 MM0
124 nnge1 M1M
125 122 123 124 3jca M10M01M
126 1 125 syl φ10M01M
127 elfz2nn0 10M10M01M
128 126 127 sylibr φ10M
129 18 128 eqeltrid φ0+10M
130 129 ad2antrl P0=+∞φ¬M=10+10M
131 130 adantr P0=+∞φ¬M=1i1..^M0+10M
132 118 120 131 iccpartxr P0=+∞φ¬M=1i1..^MP0+1*
133 pnfnlt P0+1*¬+∞<P0+1
134 132 133 syl P0=+∞φ¬M=1i1..^M¬+∞<P0+1
135 116 134 pm2.21dd P0=+∞φ¬M=1i1..^MP0<Pi
136 135 ralrimiva P0=+∞φ¬M=1i1..^MP0<Pi
137 136 ex P0=+∞φ¬M=1i1..^MP0<Pi
138 1 adantr φi1..^MM
139 2 adantr φi1..^MPRePartM
140 simpr φi1..^Mi1..^M
141 138 139 140 iccpartipre φi1..^MPi
142 mnflt Pi−∞<Pi
143 141 142 syl φi1..^M−∞<Pi
144 143 ralrimiva φi1..^M−∞<Pi
145 144 ad2antrl P0=−∞φ¬M=1i1..^M−∞<Pi
146 breq1 P0=−∞P0<Pi−∞<Pi
147 146 adantr P0=−∞φ¬M=1P0<Pi−∞<Pi
148 147 ralbidv P0=−∞φ¬M=1i1..^MP0<Pii1..^M−∞<Pi
149 145 148 mpbird P0=−∞φ¬M=1i1..^MP0<Pi
150 149 ex P0=−∞φ¬M=1i1..^MP0<Pi
151 104 137 150 3jaoi P0P0=+∞P0=−∞φ¬M=1i1..^MP0<Pi
152 15 151 sylbi P0*φ¬M=1i1..^MP0<Pi
153 14 152 mpcom φ¬M=1i1..^MP0<Pi
154 153 expcom ¬M=1φi1..^MP0<Pi
155 9 154 pm2.61i φi1..^MP0<Pi