| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartgtprec.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | ral0 | ⊢ ∀ 𝑖  ∈  ∅ ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑀  =  1  →  ( 1 ..^ 𝑀 )  =  ( 1 ..^ 1 ) ) | 
						
							| 5 |  | fzo0 | ⊢ ( 1 ..^ 1 )  =  ∅ | 
						
							| 6 | 4 5 | eqtrdi | ⊢ ( 𝑀  =  1  →  ( 1 ..^ 𝑀 )  =  ∅ ) | 
						
							| 7 | 6 | raleqdv | ⊢ ( 𝑀  =  1  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  ∅ ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 8 | 3 7 | mpbiri | ⊢ ( 𝑀  =  1  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 9 | 8 | a1d | ⊢ ( 𝑀  =  1  →  ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 10 | 1 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 11 |  | 0elfz | ⊢ ( 𝑀  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 13 | 1 2 12 | iccpartxr | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  ∈  ℝ* ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ( 𝑃 ‘ 0 )  ∈  ℝ* ) | 
						
							| 15 |  | elxr | ⊢ ( ( 𝑃 ‘ 0 )  ∈  ℝ*  ↔  ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∨  ( 𝑃 ‘ 0 )  =  +∞  ∨  ( 𝑃 ‘ 0 )  =  -∞ ) ) | 
						
							| 16 |  | 0zd | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  0  ∈  ℤ ) | 
						
							| 17 |  | elfzouz | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  𝑖  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 18 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 19 | 18 | fveq2i | ⊢ ( ℤ≥ ‘ ( 0  +  1 ) )  =  ( ℤ≥ ‘ 1 ) | 
						
							| 20 | 17 19 | eleqtrrdi | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  𝑖  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  𝑖  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 23 | 22 | eqcomd | ⊢ ( 𝑘  =  0  →  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 24 | 23 | eleq1d | ⊢ ( 𝑘  =  0  →  ( ( 𝑃 ‘ 0 )  ∈  ℝ  ↔  ( 𝑃 ‘ 𝑘 )  ∈  ℝ ) ) | 
						
							| 25 | 24 | biimpcd | ⊢ ( ( 𝑃 ‘ 0 )  ∈  ℝ  →  ( 𝑘  =  0  →  ( 𝑃 ‘ 𝑘 )  ∈  ℝ ) ) | 
						
							| 26 | 25 | ad3antrrr | ⊢ ( ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( 𝑘  =  0  →  ( 𝑃 ‘ 𝑘 )  ∈  ℝ ) ) | 
						
							| 27 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝑘  ∈  ( 0 ... 𝑖 )  ∧  𝑘  ≠  0 ) ) )  →  𝑀  ∈  ℕ ) | 
						
							| 28 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝑘  ∈  ( 0 ... 𝑖 )  ∧  𝑘  ≠  0 ) ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 29 |  | elfz2nn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑖 )  ↔  ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0  ∧  𝑘  ≤  𝑖 ) ) | 
						
							| 30 |  | elfzo2 | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ↔  ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 ) ) | 
						
							| 31 |  | simpl1 | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0  ∧  𝑘  ≤  𝑖 )  ∧  ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 32 |  | simpr2 | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0  ∧  𝑘  ≤  𝑖 )  ∧  ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 33 |  | nn0ge0 | ⊢ ( 𝑖  ∈  ℕ0  →  0  ≤  𝑖 ) | 
						
							| 34 |  | 0red | ⊢ ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ )  →  0  ∈  ℝ ) | 
						
							| 35 |  | eluzelre | ⊢ ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  →  𝑖  ∈  ℝ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ )  →  𝑖  ∈  ℝ ) | 
						
							| 37 |  | zre | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ )  →  𝑀  ∈  ℝ ) | 
						
							| 39 |  | lelttr | ⊢ ( ( 0  ∈  ℝ  ∧  𝑖  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( ( 0  ≤  𝑖  ∧  𝑖  <  𝑀 )  →  0  <  𝑀 ) ) | 
						
							| 40 | 34 36 38 39 | syl3anc | ⊢ ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ )  →  ( ( 0  ≤  𝑖  ∧  𝑖  <  𝑀 )  →  0  <  𝑀 ) ) | 
						
							| 41 | 40 | expcomd | ⊢ ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ )  →  ( 𝑖  <  𝑀  →  ( 0  ≤  𝑖  →  0  <  𝑀 ) ) ) | 
						
							| 42 | 41 | 3impia | ⊢ ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 )  →  ( 0  ≤  𝑖  →  0  <  𝑀 ) ) | 
						
							| 43 | 33 42 | syl5com | ⊢ ( 𝑖  ∈  ℕ0  →  ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 )  →  0  <  𝑀 ) ) | 
						
							| 44 | 43 | 3ad2ant2 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0  ∧  𝑘  ≤  𝑖 )  →  ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 )  →  0  <  𝑀 ) ) | 
						
							| 45 | 44 | imp | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0  ∧  𝑘  ≤  𝑖 )  ∧  ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 ) )  →  0  <  𝑀 ) | 
						
							| 46 |  | elnnz | ⊢ ( 𝑀  ∈  ℕ  ↔  ( 𝑀  ∈  ℤ  ∧  0  <  𝑀 ) ) | 
						
							| 47 | 32 45 46 | sylanbrc | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0  ∧  𝑘  ≤  𝑖 )  ∧  ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 48 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 49 | 48 | ad2antrl | ⊢ ( ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 50 |  | nn0re | ⊢ ( 𝑖  ∈  ℕ0  →  𝑖  ∈  ℝ ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0 )  →  𝑖  ∈  ℝ ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 53 | 38 | adantr | ⊢ ( ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 54 |  | lelttr | ⊢ ( ( 𝑘  ∈  ℝ  ∧  𝑖  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( ( 𝑘  ≤  𝑖  ∧  𝑖  <  𝑀 )  →  𝑘  <  𝑀 ) ) | 
						
							| 55 | 54 | expd | ⊢ ( ( 𝑘  ∈  ℝ  ∧  𝑖  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( 𝑘  ≤  𝑖  →  ( 𝑖  <  𝑀  →  𝑘  <  𝑀 ) ) ) | 
						
							| 56 | 49 52 53 55 | syl3anc | ⊢ ( ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0 ) )  →  ( 𝑘  ≤  𝑖  →  ( 𝑖  <  𝑀  →  𝑘  <  𝑀 ) ) ) | 
						
							| 57 | 56 | exp31 | ⊢ ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑀  ∈  ℤ  →  ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑘  ≤  𝑖  →  ( 𝑖  <  𝑀  →  𝑘  <  𝑀 ) ) ) ) ) | 
						
							| 58 | 57 | com34 | ⊢ ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑀  ∈  ℤ  →  ( 𝑘  ≤  𝑖  →  ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑖  <  𝑀  →  𝑘  <  𝑀 ) ) ) ) ) | 
						
							| 59 | 58 | com35 | ⊢ ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑀  ∈  ℤ  →  ( 𝑖  <  𝑀  →  ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑘  ≤  𝑖  →  𝑘  <  𝑀 ) ) ) ) ) | 
						
							| 60 | 59 | 3imp | ⊢ ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 )  →  ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑘  ≤  𝑖  →  𝑘  <  𝑀 ) ) ) | 
						
							| 61 | 60 | expdcom | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑖  ∈  ℕ0  →  ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 )  →  ( 𝑘  ≤  𝑖  →  𝑘  <  𝑀 ) ) ) ) | 
						
							| 62 | 61 | com34 | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑖  ∈  ℕ0  →  ( 𝑘  ≤  𝑖  →  ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 )  →  𝑘  <  𝑀 ) ) ) ) | 
						
							| 63 | 62 | 3imp1 | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0  ∧  𝑘  ≤  𝑖 )  ∧  ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 ) )  →  𝑘  <  𝑀 ) | 
						
							| 64 |  | elfzo0 | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑀 )  ↔  ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝑘  <  𝑀 ) ) | 
						
							| 65 | 31 47 63 64 | syl3anbrc | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0  ∧  𝑘  ≤  𝑖 )  ∧  ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 ) )  →  𝑘  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 66 | 65 | ex | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0  ∧  𝑘  ≤  𝑖 )  →  ( ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ  ∧  𝑖  <  𝑀 )  →  𝑘  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 67 | 30 66 | biimtrid | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑖  ∈  ℕ0  ∧  𝑘  ≤  𝑖 )  →  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  𝑘  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 68 | 29 67 | sylbi | ⊢ ( 𝑘  ∈  ( 0 ... 𝑖 )  →  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  𝑘  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝑖 )  ∧  𝑘  ≠  0 )  →  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  𝑘  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 70 | 69 | impcom | ⊢ ( ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝑘  ∈  ( 0 ... 𝑖 )  ∧  𝑘  ≠  0 ) )  →  𝑘  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 71 |  | simpr | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝑖 )  ∧  𝑘  ≠  0 )  →  𝑘  ≠  0 ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝑘  ∈  ( 0 ... 𝑖 )  ∧  𝑘  ≠  0 ) )  →  𝑘  ≠  0 ) | 
						
							| 73 |  | fzo1fzo0n0 | ⊢ ( 𝑘  ∈  ( 1 ..^ 𝑀 )  ↔  ( 𝑘  ∈  ( 0 ..^ 𝑀 )  ∧  𝑘  ≠  0 ) ) | 
						
							| 74 | 70 72 73 | sylanbrc | ⊢ ( ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝑘  ∈  ( 0 ... 𝑖 )  ∧  𝑘  ≠  0 ) )  →  𝑘  ∈  ( 1 ..^ 𝑀 ) ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝑘  ∈  ( 0 ... 𝑖 )  ∧  𝑘  ≠  0 ) ) )  →  𝑘  ∈  ( 1 ..^ 𝑀 ) ) | 
						
							| 76 | 27 28 75 | iccpartipre | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝑘  ∈  ( 0 ... 𝑖 )  ∧  𝑘  ≠  0 ) ) )  →  ( 𝑃 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 77 | 76 | exp32 | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  ( ( 𝑘  ∈  ( 0 ... 𝑖 )  ∧  𝑘  ≠  0 )  →  ( 𝑃 ‘ 𝑘 )  ∈  ℝ ) ) ) | 
						
							| 78 | 77 | ad2antrl | ⊢ ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  →  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  ( ( 𝑘  ∈  ( 0 ... 𝑖 )  ∧  𝑘  ≠  0 )  →  ( 𝑃 ‘ 𝑘 )  ∈  ℝ ) ) ) | 
						
							| 79 | 78 | imp | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( ( 𝑘  ∈  ( 0 ... 𝑖 )  ∧  𝑘  ≠  0 )  →  ( 𝑃 ‘ 𝑘 )  ∈  ℝ ) ) | 
						
							| 80 | 79 | expdimp | ⊢ ( ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( 𝑘  ≠  0  →  ( 𝑃 ‘ 𝑘 )  ∈  ℝ ) ) | 
						
							| 81 | 26 80 | pm2.61dne | ⊢ ( ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( 𝑃 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 82 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  𝑀  ∈  ℕ ) | 
						
							| 83 | 82 | ad3antlr | ⊢ ( ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑀  ∈  ℕ ) | 
						
							| 84 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 85 | 84 | ad3antlr | ⊢ ( ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 86 |  | elfzoelz | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  𝑖  ∈  ℤ ) | 
						
							| 87 | 86 | adantl | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 88 |  | fzoval | ⊢ ( 𝑖  ∈  ℤ  →  ( 0 ..^ 𝑖 )  =  ( 0 ... ( 𝑖  −  1 ) ) ) | 
						
							| 89 | 88 | eqcomd | ⊢ ( 𝑖  ∈  ℤ  →  ( 0 ... ( 𝑖  −  1 ) )  =  ( 0 ..^ 𝑖 ) ) | 
						
							| 90 | 87 89 | syl | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 0 ... ( 𝑖  −  1 ) )  =  ( 0 ..^ 𝑖 ) ) | 
						
							| 91 | 90 | eleq2d | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 𝑘  ∈  ( 0 ... ( 𝑖  −  1 ) )  ↔  𝑘  ∈  ( 0 ..^ 𝑖 ) ) ) | 
						
							| 92 |  | elfzouz2 | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑖 ) ) | 
						
							| 93 | 92 | adantl | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑖 ) ) | 
						
							| 94 |  | fzoss2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝑖 )  →  ( 0 ..^ 𝑖 )  ⊆  ( 0 ..^ 𝑀 ) ) | 
						
							| 95 | 93 94 | syl | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 0 ..^ 𝑖 )  ⊆  ( 0 ..^ 𝑀 ) ) | 
						
							| 96 | 95 | sseld | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 𝑘  ∈  ( 0 ..^ 𝑖 )  →  𝑘  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 97 | 91 96 | sylbid | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 𝑘  ∈  ( 0 ... ( 𝑖  −  1 ) )  →  𝑘  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 98 | 97 | imp | ⊢ ( ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑘  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 99 |  | iccpartimp | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  𝑘  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑘 )  <  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 100 | 83 85 98 99 | syl3anc | ⊢ ( ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑘 )  <  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 101 | 100 | simprd | ⊢ ( ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  ( 𝑃 ‘ 𝑘 )  <  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 102 | 16 21 81 101 | smonoord | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 103 | 102 | ralrimiva | ⊢ ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 104 | 103 | ex | ⊢ ( ( 𝑃 ‘ 0 )  ∈  ℝ  →  ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 105 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 𝑀 )  ↔  𝑀  ∈  ℕ ) | 
						
							| 106 | 1 105 | sylibr | ⊢ ( 𝜑  →  0  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 107 | 1 2 106 | 3jca | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℕ  ∧  𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  0  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 108 | 107 | ad2antrl | ⊢ ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  →  ( 𝑀  ∈  ℕ  ∧  𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  0  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 𝑀  ∈  ℕ  ∧  𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  0  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 110 |  | iccpartimp | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  0  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) ) | 
						
							| 111 | 109 110 | syl | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) ) | 
						
							| 112 | 111 | simprd | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) | 
						
							| 113 |  | breq1 | ⊢ ( ( 𝑃 ‘ 0 )  =  +∞  →  ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ ( 0  +  1 ) )  ↔  +∞  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) ) | 
						
							| 114 | 113 | adantr | ⊢ ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  →  ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ ( 0  +  1 ) )  ↔  +∞  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ ( 0  +  1 ) )  ↔  +∞  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) ) | 
						
							| 116 | 112 115 | mpbid | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  +∞  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) | 
						
							| 117 | 1 | ad2antrl | ⊢ ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 119 | 2 | ad2antrl | ⊢ ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 120 | 119 | adantr | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 121 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 122 | 121 | a1i | ⊢ ( 𝑀  ∈  ℕ  →  1  ∈  ℕ0 ) | 
						
							| 123 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 124 |  | nnge1 | ⊢ ( 𝑀  ∈  ℕ  →  1  ≤  𝑀 ) | 
						
							| 125 | 122 123 124 | 3jca | ⊢ ( 𝑀  ∈  ℕ  →  ( 1  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  1  ≤  𝑀 ) ) | 
						
							| 126 | 1 125 | syl | ⊢ ( 𝜑  →  ( 1  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  1  ≤  𝑀 ) ) | 
						
							| 127 |  | elfz2nn0 | ⊢ ( 1  ∈  ( 0 ... 𝑀 )  ↔  ( 1  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  1  ≤  𝑀 ) ) | 
						
							| 128 | 126 127 | sylibr | ⊢ ( 𝜑  →  1  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 129 | 18 128 | eqeltrid | ⊢ ( 𝜑  →  ( 0  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 130 | 129 | ad2antrl | ⊢ ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  →  ( 0  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 0  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 132 | 118 120 131 | iccpartxr | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 𝑃 ‘ ( 0  +  1 ) )  ∈  ℝ* ) | 
						
							| 133 |  | pnfnlt | ⊢ ( ( 𝑃 ‘ ( 0  +  1 ) )  ∈  ℝ*  →  ¬  +∞  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) | 
						
							| 134 | 132 133 | syl | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ¬  +∞  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) | 
						
							| 135 | 116 134 | pm2.21dd | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 136 | 135 | ralrimiva | ⊢ ( ( ( 𝑃 ‘ 0 )  =  +∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 137 | 136 | ex | ⊢ ( ( 𝑃 ‘ 0 )  =  +∞  →  ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 138 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 139 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 140 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  𝑖  ∈  ( 1 ..^ 𝑀 ) ) | 
						
							| 141 | 138 139 140 | iccpartipre | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 142 |  | mnflt | ⊢ ( ( 𝑃 ‘ 𝑖 )  ∈  ℝ  →  -∞  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 143 | 141 142 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  -∞  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 144 | 143 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) -∞  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 145 | 144 | ad2antrl | ⊢ ( ( ( 𝑃 ‘ 0 )  =  -∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) -∞  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 146 |  | breq1 | ⊢ ( ( 𝑃 ‘ 0 )  =  -∞  →  ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 )  ↔  -∞  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 147 | 146 | adantr | ⊢ ( ( ( 𝑃 ‘ 0 )  =  -∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  →  ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 )  ↔  -∞  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 148 | 147 | ralbidv | ⊢ ( ( ( 𝑃 ‘ 0 )  =  -∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) -∞  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 149 | 145 148 | mpbird | ⊢ ( ( ( 𝑃 ‘ 0 )  =  -∞  ∧  ( 𝜑  ∧  ¬  𝑀  =  1 ) )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 150 | 149 | ex | ⊢ ( ( 𝑃 ‘ 0 )  =  -∞  →  ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 151 | 104 137 150 | 3jaoi | ⊢ ( ( ( 𝑃 ‘ 0 )  ∈  ℝ  ∨  ( 𝑃 ‘ 0 )  =  +∞  ∨  ( 𝑃 ‘ 0 )  =  -∞ )  →  ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 152 | 15 151 | sylbi | ⊢ ( ( 𝑃 ‘ 0 )  ∈  ℝ*  →  ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 153 | 14 152 | mpcom | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 154 | 153 | expcom | ⊢ ( ¬  𝑀  =  1  →  ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 155 | 9 154 | pm2.61i | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) |