| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartgtprec.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 𝑀 )  ↔  𝑀  ∈  ℕ ) | 
						
							| 4 | 1 3 | sylibr | ⊢ ( 𝜑  →  0  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 5 |  | iccpartimp | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  0  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) ) | 
						
							| 6 | 1 2 4 5 | syl3anc | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) ) | 
						
							| 7 | 6 | simprd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑀  =  1  ∧  𝜑 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ ( 0  +  1 ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑀  =  1  →  ( 𝑃 ‘ 𝑀 )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 10 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 11 | 10 | fveq2i | ⊢ ( 𝑃 ‘ 1 )  =  ( 𝑃 ‘ ( 0  +  1 ) ) | 
						
							| 12 | 9 11 | eqtrdi | ⊢ ( 𝑀  =  1  →  ( 𝑃 ‘ 𝑀 )  =  ( 𝑃 ‘ ( 0  +  1 ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑀  =  1  ∧  𝜑 )  →  ( 𝑃 ‘ 𝑀 )  =  ( 𝑃 ‘ ( 0  +  1 ) ) ) | 
						
							| 14 | 8 13 | breqtrrd | ⊢ ( ( 𝑀  =  1  ∧  𝜑 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 15 | 14 | ex | ⊢ ( 𝑀  =  1  →  ( 𝜑  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 16 | 1 2 | iccpartiltu | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 17 | 1 2 | iccpartigtl | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 18 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 19 | 18 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  1  ∈  ℕ ) | 
						
							| 20 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  𝑀  ∈  ℕ ) | 
						
							| 21 |  | df-ne | ⊢ ( 𝑀  ≠  1  ↔  ¬  𝑀  =  1 ) | 
						
							| 22 | 1 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑀 ) | 
						
							| 23 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 24 | 1 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 25 | 23 24 | ltlend | ⊢ ( 𝜑  →  ( 1  <  𝑀  ↔  ( 1  ≤  𝑀  ∧  𝑀  ≠  1 ) ) ) | 
						
							| 26 | 25 | biimprd | ⊢ ( 𝜑  →  ( ( 1  ≤  𝑀  ∧  𝑀  ≠  1 )  →  1  <  𝑀 ) ) | 
						
							| 27 | 22 26 | mpand | ⊢ ( 𝜑  →  ( 𝑀  ≠  1  →  1  <  𝑀 ) ) | 
						
							| 28 | 21 27 | biimtrrid | ⊢ ( 𝜑  →  ( ¬  𝑀  =  1  →  1  <  𝑀 ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  1  <  𝑀 ) | 
						
							| 30 |  | elfzo1 | ⊢ ( 1  ∈  ( 1 ..^ 𝑀 )  ↔  ( 1  ∈  ℕ  ∧  𝑀  ∈  ℕ  ∧  1  <  𝑀 ) ) | 
						
							| 31 | 19 20 29 30 | syl3anbrc | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  1  ∈  ( 1 ..^ 𝑀 ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑖  =  1  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 33 | 32 | breq2d | ⊢ ( 𝑖  =  1  →  ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 )  ↔  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 34 | 33 | rspcv | ⊢ ( 1  ∈  ( 1 ..^ 𝑀 )  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 35 | 31 34 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 36 | 32 | breq1d | ⊢ ( 𝑖  =  1  →  ( ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑃 ‘ 1 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 37 | 36 | rspcv | ⊢ ( 1  ∈  ( 1 ..^ 𝑀 )  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 )  →  ( 𝑃 ‘ 1 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 38 | 31 37 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 )  →  ( 𝑃 ‘ 1 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 39 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 40 |  | 0elfz | ⊢ ( 𝑀  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 41 | 1 39 40 | 3syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 42 | 1 2 41 | iccpartxr | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  ∈  ℝ* ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ( 𝑃 ‘ 0 )  ∈  ℝ* ) | 
						
							| 44 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 45 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 46 | 45 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  1  ∈  ℕ0 ) | 
						
							| 47 | 1 39 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 49 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  1  ≤  𝑀 ) | 
						
							| 50 |  | elfz2nn0 | ⊢ ( 1  ∈  ( 0 ... 𝑀 )  ↔  ( 1  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  1  ≤  𝑀 ) ) | 
						
							| 51 | 46 48 49 50 | syl3anbrc | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  1  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 52 | 20 44 51 | iccpartxr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ( 𝑃 ‘ 1 )  ∈  ℝ* ) | 
						
							| 53 |  | nn0fz0 | ⊢ ( 𝑀  ∈  ℕ0  ↔  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 54 | 39 53 | sylib | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 55 | 1 54 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 56 | 1 2 55 | iccpartxr | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* ) | 
						
							| 58 |  | xrlttr | ⊢ ( ( ( 𝑃 ‘ 0 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 1 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 1 )  ∧  ( 𝑃 ‘ 1 )  <  ( 𝑃 ‘ 𝑀 ) )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 59 | 43 52 57 58 | syl3anc | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ( ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 1 )  ∧  ( 𝑃 ‘ 1 )  <  ( 𝑃 ‘ 𝑀 ) )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 60 | 59 | expcomd | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ( ( 𝑃 ‘ 1 )  <  ( 𝑃 ‘ 𝑀 )  →  ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 1 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 61 | 38 60 | syld | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 )  →  ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 1 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 62 | 61 | com23 | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 1 )  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 63 | 35 62 | syld | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  1 )  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 )  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 64 | 63 | ex | ⊢ ( 𝜑  →  ( ¬  𝑀  =  1  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 )  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) ) ) ) | 
						
							| 65 | 64 | com24 | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 )  →  ( ∀ 𝑖  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 )  →  ( ¬  𝑀  =  1  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) ) ) ) | 
						
							| 66 | 16 17 65 | mp2d | ⊢ ( 𝜑  →  ( ¬  𝑀  =  1  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 67 | 66 | com12 | ⊢ ( ¬  𝑀  =  1  →  ( 𝜑  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 68 | 15 67 | pm2.61i | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) |