Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
iccpartgtprec.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
3 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑀 ∈ ℕ ) |
4 |
1 3
|
sylibr |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝑀 ) ) |
5 |
|
iccpartimp |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ ( 0 + 1 ) ) ) ) |
6 |
1 2 4 5
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ ( 0 + 1 ) ) ) ) |
7 |
6
|
simprd |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ ( 0 + 1 ) ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝑀 = 1 ∧ 𝜑 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ ( 0 + 1 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑀 = 1 → ( 𝑃 ‘ 𝑀 ) = ( 𝑃 ‘ 1 ) ) |
10 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
11 |
10
|
fveq2i |
⊢ ( 𝑃 ‘ 1 ) = ( 𝑃 ‘ ( 0 + 1 ) ) |
12 |
9 11
|
eqtrdi |
⊢ ( 𝑀 = 1 → ( 𝑃 ‘ 𝑀 ) = ( 𝑃 ‘ ( 0 + 1 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑀 = 1 ∧ 𝜑 ) → ( 𝑃 ‘ 𝑀 ) = ( 𝑃 ‘ ( 0 + 1 ) ) ) |
14 |
8 13
|
breqtrrd |
⊢ ( ( 𝑀 = 1 ∧ 𝜑 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) |
15 |
14
|
ex |
⊢ ( 𝑀 = 1 → ( 𝜑 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
16 |
1 2
|
iccpartiltu |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) |
17 |
1 2
|
iccpartigtl |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) |
18 |
|
1nn |
⊢ 1 ∈ ℕ |
19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 1 ∈ ℕ ) |
20 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 𝑀 ∈ ℕ ) |
21 |
|
df-ne |
⊢ ( 𝑀 ≠ 1 ↔ ¬ 𝑀 = 1 ) |
22 |
1
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑀 ) |
23 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
24 |
1
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
25 |
23 24
|
ltlend |
⊢ ( 𝜑 → ( 1 < 𝑀 ↔ ( 1 ≤ 𝑀 ∧ 𝑀 ≠ 1 ) ) ) |
26 |
25
|
biimprd |
⊢ ( 𝜑 → ( ( 1 ≤ 𝑀 ∧ 𝑀 ≠ 1 ) → 1 < 𝑀 ) ) |
27 |
22 26
|
mpand |
⊢ ( 𝜑 → ( 𝑀 ≠ 1 → 1 < 𝑀 ) ) |
28 |
21 27
|
syl5bir |
⊢ ( 𝜑 → ( ¬ 𝑀 = 1 → 1 < 𝑀 ) ) |
29 |
28
|
imp |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 1 < 𝑀 ) |
30 |
|
elfzo1 |
⊢ ( 1 ∈ ( 1 ..^ 𝑀 ) ↔ ( 1 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 1 < 𝑀 ) ) |
31 |
19 20 29 30
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 1 ∈ ( 1 ..^ 𝑀 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 1 ) ) |
33 |
32
|
breq2d |
⊢ ( 𝑖 = 1 → ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ↔ ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 1 ) ) ) |
34 |
33
|
rspcv |
⊢ ( 1 ∈ ( 1 ..^ 𝑀 ) → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 1 ) ) ) |
35 |
31 34
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 1 ) ) ) |
36 |
32
|
breq1d |
⊢ ( 𝑖 = 1 → ( ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑃 ‘ 1 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
37 |
36
|
rspcv |
⊢ ( 1 ∈ ( 1 ..^ 𝑀 ) → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) → ( 𝑃 ‘ 1 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
38 |
31 37
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) → ( 𝑃 ‘ 1 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
39 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
40 |
|
0elfz |
⊢ ( 𝑀 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑀 ) ) |
41 |
1 39 40
|
3syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
42 |
1 2 41
|
iccpartxr |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) ∈ ℝ* ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ( 𝑃 ‘ 0 ) ∈ ℝ* ) |
44 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
45 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
46 |
45
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 1 ∈ ℕ0 ) |
47 |
1 39
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 𝑀 ∈ ℕ0 ) |
49 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 1 ≤ 𝑀 ) |
50 |
|
elfz2nn0 |
⊢ ( 1 ∈ ( 0 ... 𝑀 ) ↔ ( 1 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀 ) ) |
51 |
46 48 49 50
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 1 ∈ ( 0 ... 𝑀 ) ) |
52 |
20 44 51
|
iccpartxr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ( 𝑃 ‘ 1 ) ∈ ℝ* ) |
53 |
|
nn0fz0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ 𝑀 ∈ ( 0 ... 𝑀 ) ) |
54 |
39 53
|
sylib |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
55 |
1 54
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
56 |
1 2 55
|
iccpartxr |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ) |
58 |
|
xrlttr |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ℝ* ∧ ( 𝑃 ‘ 1 ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ) → ( ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) < ( 𝑃 ‘ 𝑀 ) ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
59 |
43 52 57 58
|
syl3anc |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ( ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) < ( 𝑃 ‘ 𝑀 ) ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
60 |
59
|
expcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ( ( 𝑃 ‘ 1 ) < ( 𝑃 ‘ 𝑀 ) → ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 1 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) ) ) |
61 |
38 60
|
syld |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) → ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 1 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) ) ) |
62 |
61
|
com23 |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 1 ) → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) ) ) |
63 |
35 62
|
syld |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) ) ) |
64 |
63
|
ex |
⊢ ( 𝜑 → ( ¬ 𝑀 = 1 → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) ) ) ) |
65 |
64
|
com24 |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) → ( ¬ 𝑀 = 1 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) ) ) ) |
66 |
16 17 65
|
mp2d |
⊢ ( 𝜑 → ( ¬ 𝑀 = 1 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
67 |
66
|
com12 |
⊢ ( ¬ 𝑀 = 1 → ( 𝜑 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
68 |
15 67
|
pm2.61i |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) |