Metamath Proof Explorer


Theorem iccpartlt

Description: If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 in GS's mathbox. (Contributed by AV, 12-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φM
iccpartgtprec.p φPRePartM
Assertion iccpartlt φP0<PM

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φM
2 iccpartgtprec.p φPRePartM
3 lbfzo0 00..^MM
4 1 3 sylibr φ00..^M
5 iccpartimp MPRePartM00..^MP*0MP0<P0+1
6 1 2 4 5 syl3anc φP*0MP0<P0+1
7 6 simprd φP0<P0+1
8 7 adantl M=1φP0<P0+1
9 fveq2 M=1PM=P1
10 1e0p1 1=0+1
11 10 fveq2i P1=P0+1
12 9 11 eqtrdi M=1PM=P0+1
13 12 adantr M=1φPM=P0+1
14 8 13 breqtrrd M=1φP0<PM
15 14 ex M=1φP0<PM
16 1 2 iccpartiltu φi1..^MPi<PM
17 1 2 iccpartigtl φi1..^MP0<Pi
18 1nn 1
19 18 a1i φ¬M=11
20 1 adantr φ¬M=1M
21 df-ne M1¬M=1
22 1 nnge1d φ1M
23 1red φ1
24 1 nnred φM
25 23 24 ltlend φ1<M1MM1
26 25 biimprd φ1MM11<M
27 22 26 mpand φM11<M
28 21 27 biimtrrid φ¬M=11<M
29 28 imp φ¬M=11<M
30 elfzo1 11..^M1M1<M
31 19 20 29 30 syl3anbrc φ¬M=111..^M
32 fveq2 i=1Pi=P1
33 32 breq2d i=1P0<PiP0<P1
34 33 rspcv 11..^Mi1..^MP0<PiP0<P1
35 31 34 syl φ¬M=1i1..^MP0<PiP0<P1
36 32 breq1d i=1Pi<PMP1<PM
37 36 rspcv 11..^Mi1..^MPi<PMP1<PM
38 31 37 syl φ¬M=1i1..^MPi<PMP1<PM
39 nnnn0 MM0
40 0elfz M000M
41 1 39 40 3syl φ00M
42 1 2 41 iccpartxr φP0*
43 42 adantr φ¬M=1P0*
44 2 adantr φ¬M=1PRePartM
45 1nn0 10
46 45 a1i φ¬M=110
47 1 39 syl φM0
48 47 adantr φ¬M=1M0
49 22 adantr φ¬M=11M
50 elfz2nn0 10M10M01M
51 46 48 49 50 syl3anbrc φ¬M=110M
52 20 44 51 iccpartxr φ¬M=1P1*
53 nn0fz0 M0M0M
54 39 53 sylib MM0M
55 1 54 syl φM0M
56 1 2 55 iccpartxr φPM*
57 56 adantr φ¬M=1PM*
58 xrlttr P0*P1*PM*P0<P1P1<PMP0<PM
59 43 52 57 58 syl3anc φ¬M=1P0<P1P1<PMP0<PM
60 59 expcomd φ¬M=1P1<PMP0<P1P0<PM
61 38 60 syld φ¬M=1i1..^MPi<PMP0<P1P0<PM
62 61 com23 φ¬M=1P0<P1i1..^MPi<PMP0<PM
63 35 62 syld φ¬M=1i1..^MP0<Pii1..^MPi<PMP0<PM
64 63 ex φ¬M=1i1..^MP0<Pii1..^MPi<PMP0<PM
65 64 com24 φi1..^MPi<PMi1..^MP0<Pi¬M=1P0<PM
66 16 17 65 mp2d φ¬M=1P0<PM
67 66 com12 ¬M=1φP0<PM
68 15 67 pm2.61i φP0<PM