Description: If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 in GS's mathbox. (Contributed by AV, 12-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iccpartgtprec.m | |
|
iccpartgtprec.p | |
||
Assertion | iccpartlt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | |
|
2 | iccpartgtprec.p | |
|
3 | lbfzo0 | |
|
4 | 1 3 | sylibr | |
5 | iccpartimp | |
|
6 | 1 2 4 5 | syl3anc | |
7 | 6 | simprd | |
8 | 7 | adantl | |
9 | fveq2 | |
|
10 | 1e0p1 | |
|
11 | 10 | fveq2i | |
12 | 9 11 | eqtrdi | |
13 | 12 | adantr | |
14 | 8 13 | breqtrrd | |
15 | 14 | ex | |
16 | 1 2 | iccpartiltu | |
17 | 1 2 | iccpartigtl | |
18 | 1nn | |
|
19 | 18 | a1i | |
20 | 1 | adantr | |
21 | df-ne | |
|
22 | 1 | nnge1d | |
23 | 1red | |
|
24 | 1 | nnred | |
25 | 23 24 | ltlend | |
26 | 25 | biimprd | |
27 | 22 26 | mpand | |
28 | 21 27 | biimtrrid | |
29 | 28 | imp | |
30 | elfzo1 | |
|
31 | 19 20 29 30 | syl3anbrc | |
32 | fveq2 | |
|
33 | 32 | breq2d | |
34 | 33 | rspcv | |
35 | 31 34 | syl | |
36 | 32 | breq1d | |
37 | 36 | rspcv | |
38 | 31 37 | syl | |
39 | nnnn0 | |
|
40 | 0elfz | |
|
41 | 1 39 40 | 3syl | |
42 | 1 2 41 | iccpartxr | |
43 | 42 | adantr | |
44 | 2 | adantr | |
45 | 1nn0 | |
|
46 | 45 | a1i | |
47 | 1 39 | syl | |
48 | 47 | adantr | |
49 | 22 | adantr | |
50 | elfz2nn0 | |
|
51 | 46 48 49 50 | syl3anbrc | |
52 | 20 44 51 | iccpartxr | |
53 | nn0fz0 | |
|
54 | 39 53 | sylib | |
55 | 1 54 | syl | |
56 | 1 2 55 | iccpartxr | |
57 | 56 | adantr | |
58 | xrlttr | |
|
59 | 43 52 57 58 | syl3anc | |
60 | 59 | expcomd | |
61 | 38 60 | syld | |
62 | 61 | com23 | |
63 | 35 62 | syld | |
64 | 63 | ex | |
65 | 64 | com24 | |
66 | 16 17 65 | mp2d | |
67 | 66 | com12 | |
68 | 15 67 | pm2.61i | |