| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m |  | 
						
							| 2 |  | iccpartgtprec.p |  | 
						
							| 3 |  | 0zd |  | 
						
							| 4 |  | nnz |  | 
						
							| 5 |  | nngt0 |  | 
						
							| 6 | 3 4 5 | 3jca |  | 
						
							| 7 | 1 6 | syl |  | 
						
							| 8 |  | fzopred |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 |  | 0p1e1 |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 | 11 | oveq1d |  | 
						
							| 13 | 12 | uneq2d |  | 
						
							| 14 | 9 13 | eqtrd |  | 
						
							| 15 | 14 | eleq2d |  | 
						
							| 16 |  | elun |  | 
						
							| 17 |  | elsni |  | 
						
							| 18 |  | fveq2 |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 1 2 | iccpartlt |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 | 19 21 | eqbrtrd |  | 
						
							| 23 | 22 | ex |  | 
						
							| 24 | 17 23 | syl |  | 
						
							| 25 |  | fveq2 |  | 
						
							| 26 | 25 | breq1d |  | 
						
							| 27 | 26 | rspccv |  | 
						
							| 28 | 1 2 | iccpartiltu |  | 
						
							| 29 | 27 28 | syl11 |  | 
						
							| 30 | 24 29 | jaoi |  | 
						
							| 31 | 30 | com12 |  | 
						
							| 32 | 16 31 | biimtrid |  | 
						
							| 33 | 15 32 | sylbid |  | 
						
							| 34 | 33 | ralrimiv |  |