Metamath Proof Explorer


Theorem iccpartltu

Description: If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φ M
iccpartgtprec.p φ P RePart M
Assertion iccpartltu φ i 0 ..^ M P i < P M

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φ M
2 iccpartgtprec.p φ P RePart M
3 0zd M 0
4 nnz M M
5 nngt0 M 0 < M
6 3 4 5 3jca M 0 M 0 < M
7 1 6 syl φ 0 M 0 < M
8 fzopred 0 M 0 < M 0 ..^ M = 0 0 + 1 ..^ M
9 7 8 syl φ 0 ..^ M = 0 0 + 1 ..^ M
10 0p1e1 0 + 1 = 1
11 10 a1i φ 0 + 1 = 1
12 11 oveq1d φ 0 + 1 ..^ M = 1 ..^ M
13 12 uneq2d φ 0 0 + 1 ..^ M = 0 1 ..^ M
14 9 13 eqtrd φ 0 ..^ M = 0 1 ..^ M
15 14 eleq2d φ i 0 ..^ M i 0 1 ..^ M
16 elun i 0 1 ..^ M i 0 i 1 ..^ M
17 elsni i 0 i = 0
18 fveq2 i = 0 P i = P 0
19 18 adantr i = 0 φ P i = P 0
20 1 2 iccpartlt φ P 0 < P M
21 20 adantl i = 0 φ P 0 < P M
22 19 21 eqbrtrd i = 0 φ P i < P M
23 22 ex i = 0 φ P i < P M
24 17 23 syl i 0 φ P i < P M
25 fveq2 k = i P k = P i
26 25 breq1d k = i P k < P M P i < P M
27 26 rspccv k 1 ..^ M P k < P M i 1 ..^ M P i < P M
28 1 2 iccpartiltu φ k 1 ..^ M P k < P M
29 27 28 syl11 i 1 ..^ M φ P i < P M
30 24 29 jaoi i 0 i 1 ..^ M φ P i < P M
31 30 com12 φ i 0 i 1 ..^ M P i < P M
32 16 31 syl5bi φ i 0 1 ..^ M P i < P M
33 15 32 sylbid φ i 0 ..^ M P i < P M
34 33 ralrimiv φ i 0 ..^ M P i < P M