Metamath Proof Explorer


Theorem iccpartiltu

Description: If there is a partition, then all intermediate points are strictly less than the upper bound. (Contributed by AV, 12-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φ M
iccpartgtprec.p φ P RePart M
Assertion iccpartiltu φ i 1 ..^ M P i < P M

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φ M
2 iccpartgtprec.p φ P RePart M
3 ral0 i P i < P 1
4 oveq2 M = 1 1 ..^ M = 1 ..^ 1
5 fzo0 1 ..^ 1 =
6 4 5 eqtrdi M = 1 1 ..^ M =
7 fveq2 M = 1 P M = P 1
8 7 breq2d M = 1 P i < P M P i < P 1
9 6 8 raleqbidv M = 1 i 1 ..^ M P i < P M i P i < P 1
10 3 9 mpbiri M = 1 i 1 ..^ M P i < P M
11 10 2a1d M = 1 φ M i 1 ..^ M P i < P M
12 simpr φ ¬ M = 1 M M
13 2 adantr φ ¬ M = 1 P RePart M
14 13 adantr φ ¬ M = 1 M P RePart M
15 nnnn0 M M 0
16 nn0fz0 M 0 M 0 M
17 15 16 sylib M M 0 M
18 17 adantl φ ¬ M = 1 M M 0 M
19 12 14 18 iccpartxr φ ¬ M = 1 M P M *
20 elxr P M * P M P M = +∞ P M = −∞
21 elfzoelz i 1 ..^ M i
22 21 ad2antll P M φ ¬ M = 1 M i 1 ..^ M i
23 elfzo2 i 1 ..^ M i 1 M i < M
24 eluzelz i 1 i
25 24 peano2zd i 1 i + 1
26 25 3ad2ant1 i 1 M i < M i + 1
27 simp2 i 1 M i < M M
28 zltp1le i M i < M i + 1 M
29 24 28 sylan i 1 M i < M i + 1 M
30 29 biimp3a i 1 M i < M i + 1 M
31 eluz2 M i + 1 i + 1 M i + 1 M
32 26 27 30 31 syl3anbrc i 1 M i < M M i + 1
33 23 32 sylbi i 1 ..^ M M i + 1
34 33 ad2antll P M φ ¬ M = 1 M i 1 ..^ M M i + 1
35 fveq2 k = M P k = P M
36 35 eqcomd k = M P M = P k
37 36 eleq1d k = M P M P k
38 37 biimpcd P M k = M P k
39 38 adantr P M φ ¬ M = 1 M i 1 ..^ M k = M P k
40 39 adantr P M φ ¬ M = 1 M i 1 ..^ M k i M k = M P k
41 40 com12 k = M P M φ ¬ M = 1 M i 1 ..^ M k i M P k
42 12 adantr φ ¬ M = 1 M i 1 ..^ M M
43 42 adantl P M φ ¬ M = 1 M i 1 ..^ M M
44 43 adantr P M φ ¬ M = 1 M i 1 ..^ M k i M M
45 44 adantl ¬ k = M P M φ ¬ M = 1 M i 1 ..^ M k i M M
46 14 adantr φ ¬ M = 1 M i 1 ..^ M P RePart M
47 46 adantl P M φ ¬ M = 1 M i 1 ..^ M P RePart M
48 47 adantr P M φ ¬ M = 1 M i 1 ..^ M k i M P RePart M
49 48 adantl ¬ k = M P M φ ¬ M = 1 M i 1 ..^ M k i M P RePart M
50 elfz2 k i M i M k i k k M
51 eluz2 i 1 1 i 1 i
52 1red i k 1
53 zre i i
54 53 adantr i k i
55 zre k k
56 55 adantl i k k
57 letr 1 i k 1 i i k 1 k
58 52 54 56 57 syl3anc i k 1 i i k 1 k
59 58 expcomd i k i k 1 i 1 k
60 59 adantrd i k i k k M 1 i 1 k
61 60 3adant2 i M k i k k M 1 i 1 k
62 61 imp i M k i k k M 1 i 1 k
63 62 com12 1 i i M k i k k M 1 k
64 63 3ad2ant3 1 i 1 i i M k i k k M 1 k
65 51 64 sylbi i 1 i M k i k k M 1 k
66 65 3ad2ant1 i 1 M i < M i M k i k k M 1 k
67 23 66 sylbi i 1 ..^ M i M k i k k M 1 k
68 50 67 syl5bi i 1 ..^ M k i M 1 k
69 68 imp i 1 ..^ M k i M 1 k
70 69 3adant3 i 1 ..^ M k i M ¬ k = M 1 k
71 zre M M
72 71 55 anim12ci M k k M
73 72 3adant1 i M k k M
74 ltlen k M k < M k M M k
75 73 74 syl i M k k < M k M M k
76 nesym M k ¬ k = M
77 76 anbi2i k M M k k M ¬ k = M
78 75 77 bitr2di i M k k M ¬ k = M k < M
79 78 biimpd i M k k M ¬ k = M k < M
80 79 expd i M k k M ¬ k = M k < M
81 80 adantld i M k i k k M ¬ k = M k < M
82 81 imp i M k i k k M ¬ k = M k < M
83 50 82 sylbi k i M ¬ k = M k < M
84 83 imp k i M ¬ k = M k < M
85 84 3adant1 i 1 ..^ M k i M ¬ k = M k < M
86 70 85 jca i 1 ..^ M k i M ¬ k = M 1 k k < M
87 elfzelz k i M k
88 1zzd k i M 1
89 elfzel2 k i M M
90 87 88 89 3jca k i M k 1 M
91 90 3ad2ant2 i 1 ..^ M k i M ¬ k = M k 1 M
92 elfzo k 1 M k 1 ..^ M 1 k k < M
93 91 92 syl i 1 ..^ M k i M ¬ k = M k 1 ..^ M 1 k k < M
94 86 93 mpbird i 1 ..^ M k i M ¬ k = M k 1 ..^ M
95 94 3exp i 1 ..^ M k i M ¬ k = M k 1 ..^ M
96 95 ad2antll P M φ ¬ M = 1 M i 1 ..^ M k i M ¬ k = M k 1 ..^ M
97 96 imp P M φ ¬ M = 1 M i 1 ..^ M k i M ¬ k = M k 1 ..^ M
98 97 impcom ¬ k = M P M φ ¬ M = 1 M i 1 ..^ M k i M k 1 ..^ M
99 45 49 98 iccpartipre ¬ k = M P M φ ¬ M = 1 M i 1 ..^ M k i M P k
100 99 ex ¬ k = M P M φ ¬ M = 1 M i 1 ..^ M k i M P k
101 41 100 pm2.61i P M φ ¬ M = 1 M i 1 ..^ M k i M P k
102 43 adantr P M φ ¬ M = 1 M i 1 ..^ M k i M 1 M
103 47 adantr P M φ ¬ M = 1 M i 1 ..^ M k i M 1 P RePart M
104 1eluzge0 1 0
105 fzoss1 1 0 1 ..^ M 0 ..^ M
106 104 105 mp1i i 1 ..^ M k i M 1 1 ..^ M 0 ..^ M
107 elfzoel2 i 1 ..^ M M
108 fzoval M i ..^ M = i M 1
109 107 108 syl i 1 ..^ M i ..^ M = i M 1
110 109 eqcomd i 1 ..^ M i M 1 = i ..^ M
111 110 eleq2d i 1 ..^ M k i M 1 k i ..^ M
112 elfzouz i 1 ..^ M i 1
113 fzoss1 i 1 i ..^ M 1 ..^ M
114 112 113 syl i 1 ..^ M i ..^ M 1 ..^ M
115 114 sseld i 1 ..^ M k i ..^ M k 1 ..^ M
116 111 115 sylbid i 1 ..^ M k i M 1 k 1 ..^ M
117 116 imp i 1 ..^ M k i M 1 k 1 ..^ M
118 106 117 sseldd i 1 ..^ M k i M 1 k 0 ..^ M
119 118 ex i 1 ..^ M k i M 1 k 0 ..^ M
120 119 ad2antll P M φ ¬ M = 1 M i 1 ..^ M k i M 1 k 0 ..^ M
121 120 imp P M φ ¬ M = 1 M i 1 ..^ M k i M 1 k 0 ..^ M
122 iccpartimp M P RePart M k 0 ..^ M P * 0 M P k < P k + 1
123 102 103 121 122 syl3anc P M φ ¬ M = 1 M i 1 ..^ M k i M 1 P * 0 M P k < P k + 1
124 123 simprd P M φ ¬ M = 1 M i 1 ..^ M k i M 1 P k < P k + 1
125 22 34 101 124 smonoord P M φ ¬ M = 1 M i 1 ..^ M P i < P M
126 125 ex P M φ ¬ M = 1 M i 1 ..^ M P i < P M
127 simpr φ ¬ M = 1 M i 1 ..^ M i 1 ..^ M
128 42 46 127 iccpartipre φ ¬ M = 1 M i 1 ..^ M P i
129 ltpnf P i P i < +∞
130 128 129 syl φ ¬ M = 1 M i 1 ..^ M P i < +∞
131 breq2 P M = +∞ P i < P M P i < +∞
132 130 131 syl5ibr P M = +∞ φ ¬ M = 1 M i 1 ..^ M P i < P M
133 42 adantl P M = −∞ φ ¬ M = 1 M i 1 ..^ M M
134 46 adantl P M = −∞ φ ¬ M = 1 M i 1 ..^ M P RePart M
135 elfzofz i 1 ..^ M i 1 M
136 135 ad2antll P M = −∞ φ ¬ M = 1 M i 1 ..^ M i 1 M
137 elfzubelfz i 1 M M 1 M
138 136 137 syl P M = −∞ φ ¬ M = 1 M i 1 ..^ M M 1 M
139 133 134 138 iccpartgtprec P M = −∞ φ ¬ M = 1 M i 1 ..^ M P M 1 < P M
140 breq2 −∞ = P M P M 1 < −∞ P M 1 < P M
141 140 eqcoms P M = −∞ P M 1 < −∞ P M 1 < P M
142 141 adantr P M = −∞ φ ¬ M = 1 M i 1 ..^ M P M 1 < −∞ P M 1 < P M
143 139 142 mpbird P M = −∞ φ ¬ M = 1 M i 1 ..^ M P M 1 < −∞
144 15 adantl φ ¬ M = 1 M M 0
145 144 adantr φ ¬ M = 1 M i 1 ..^ M M 0
146 nnne0 M M 0
147 146 adantl φ ¬ M = 1 M M 0
148 df-ne M 1 ¬ M = 1
149 148 biimpri ¬ M = 1 M 1
150 149 adantl φ ¬ M = 1 M 1
151 150 adantr φ ¬ M = 1 M M 1
152 144 147 151 3jca φ ¬ M = 1 M M 0 M 0 M 1
153 152 adantr φ ¬ M = 1 M i 1 ..^ M M 0 M 0 M 1
154 nn0n0n1ge2 M 0 M 0 M 1 2 M
155 153 154 syl φ ¬ M = 1 M i 1 ..^ M 2 M
156 145 155 jca φ ¬ M = 1 M i 1 ..^ M M 0 2 M
157 156 adantl P M = −∞ φ ¬ M = 1 M i 1 ..^ M M 0 2 M
158 ige2m1fz M 0 2 M M 1 0 M
159 157 158 syl P M = −∞ φ ¬ M = 1 M i 1 ..^ M M 1 0 M
160 133 134 159 iccpartxr P M = −∞ φ ¬ M = 1 M i 1 ..^ M P M 1 *
161 nltmnf P M 1 * ¬ P M 1 < −∞
162 160 161 syl P M = −∞ φ ¬ M = 1 M i 1 ..^ M ¬ P M 1 < −∞
163 143 162 pm2.21dd P M = −∞ φ ¬ M = 1 M i 1 ..^ M P i < P M
164 163 ex P M = −∞ φ ¬ M = 1 M i 1 ..^ M P i < P M
165 126 132 164 3jaoi P M P M = +∞ P M = −∞ φ ¬ M = 1 M i 1 ..^ M P i < P M
166 165 impl P M P M = +∞ P M = −∞ φ ¬ M = 1 M i 1 ..^ M P i < P M
167 166 ralrimiva P M P M = +∞ P M = −∞ φ ¬ M = 1 M i 1 ..^ M P i < P M
168 167 ex P M P M = +∞ P M = −∞ φ ¬ M = 1 M i 1 ..^ M P i < P M
169 20 168 sylbi P M * φ ¬ M = 1 M i 1 ..^ M P i < P M
170 19 169 mpcom φ ¬ M = 1 M i 1 ..^ M P i < P M
171 170 ex φ ¬ M = 1 M i 1 ..^ M P i < P M
172 171 expcom ¬ M = 1 φ M i 1 ..^ M P i < P M
173 11 172 pm2.61i φ M i 1 ..^ M P i < P M
174 1 173 mpd φ i 1 ..^ M P i < P M